During the past two decades, O-GlcNAc modification of cytosolic and nuclear proteins has been intensively studied. Nevertheless, the function of this post-translational modification remains unclear. It has been recently speculated that O-GlcNAc could act as a protective signal against proteasomal degradation, both by modifying target substrates and/or by inhibiting the proteasome itself. In this work, we have investigated the putative relation between O-GlcNAc and the ubiquitin pathway. First, we showed that the level of both modifications increased rapidly after thermal stress but, unlike ubiquitinated proteins, O-GlcNAc-modified proteins failed to be stabilized by inhibiting proteasome function. Increasing O-GlcNAc levels, using glucosamine or PUGNAc, enhanced ubiquitination. Inversely, when O-GlcNAc levels were reduced, using forskolin or glucose deprivation, ubiquitination decreased. Targeted-RNA interference of O-GlcNAc transferase also reduced ubiquitination and moreover halved cell thermotolerance. Finally, we demonstrated that the ubiquitin-activating enzyme E1 was O-GlcNAc modified and that its glycosylation and its interaction with Hsp70 varied according to the conditions of cell culture. Altogether, these results show that O-GlcNAc and ubiquitin are not strictly antagonistic post-translational modifications, but rather that the former might regulate the latter, and also suggest that E1 could be one of the common links between the two pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.