Nitric oxide (NO) is a regulatory molecule in the vascular system and its inhibition due to endothelial injury contributes to cardiovascular disease. The glycocalyx is a thin layer of glycolipids, glycoproteins, and proteoglycans on the surface of mammalian epithelial cells. Extracellular forces are transmitted through the glycocalyx to initiate intracellular signaling pathways. In endothelial cells (ECs), previous studies have shown the glycocalyx to be a significant mediator of NO production; degradation of the endothelial glycocalyx layer (EGL) drastically reduces EC production of NO in response to fluid shear stress. However, the specific EGL components involved in this process are not well established. Recent work using short-hairpin RNA approaches in vitro suggest that the proteoglycan glypican-1, not syndecan-1, is the dominant core protein mediating shear-induced NO production. We utilized atomic force microscopy (AFM) to apply force selectively to components of the EGL of confluent rat fat pad ECs (RFPECs), including proteoglycans and glycosaminoglycans, to observe how each component individually contributes to force-induced production of NO. 4,5-diaminofluorescein diacetate, a cell-permeable fluorescent molecule, was used to detect changes in intracellular NO production. Antibody-coated AFM probes exhibited strong surface binding to RFPEC monolayers, with 100-300 pN mean adhesion forces. AFM pulling on glypican-1 and heparan sulfate for 10 min caused significantly increased NO production, whereas pulling on syndecan-1, CD44, hyaluronic acid, and with control probes did not. We conclude that AFM pulling can be used to activate EGL-mediated NO production and that the heparan sulfate proteoglycan glypican-1 is a primary mechanosensor for shear-induced NO production.
This study aimed to clarify the role of glypican-1 and PECAM-1 in shear-induced nitric oxide production in endothelial cells. Atomic force microscopy pulling was used to apply force to glypican-1 and PECAM-1 on the surface of human umbilical vein endothelial cells and nitric oxide was measured using a fluorescent reporter dye. Glypican-1 pulling for 30 min stimulated nitric oxide production while PECAM-1 pulling did not. However, PECAM-1 downstream activation was necessary for the glypican-1 force-induced response. Glypican-1 knockout mice exhibited impaired flow-induced phosphorylation of eNOS without changes to PECAM-1 expression. A cooperation mechanism for the mechanotransduction of fluid shear stress to nitric oxide production was elucidated in which glypican-1 senses flow and phosphorylates PECAM-1 leading to endothelial nitric oxide synthase phosphorylation and nitric oxide production.
Early Alzheimer’s disease (AD) pathology can be found in cortical biopsies taken during shunt placement for Normal Pressure Hydrocephalus. This represents an opportunity to study early AD pathology in living patients. Here we report RNA-seq data on 106 cortical biopsies from this patient population. A restricted set of genes correlate with AD pathology in these biopsies, and co-expression network analysis demonstrates an evolution from microglial homeostasis to a disease-associated microglial phenotype in conjunction with increasing AD pathologic burden, along with a subset of additional astrocytic and neuronal genes that accompany these changes. Further analysis demonstrates that these correlations are driven by patients that report mild cognitive symptoms, despite similar levels of biopsy β-amyloid and tau pathology in comparison to patients who report no cognitive symptoms. Taken together, these findings highlight a restricted set of microglial and non-microglial genes that correlate with early AD pathology in the setting of subjective cognitive decline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.