Control of insecticide-resistant vector populations remains a significant challenge to global malaria control and while substantial progress has been made elucidating key target site mutations, overexpressed detoxification enzymes and alternate gene families, the contribution of the mosquito microbiota to phenotypic insecticide resistance has been largely overlooked. We focused on determining the effects of deltamethrin resistance intensity on
Anopheles coluzzii
microbiota and identifying any microbial taxa associated with phenotype.
Background
Resistance to major public health insecticides in Côte d’Ivoire has intensified and now threatens the long-term effectiveness of malaria vector control interventions.
Methods
This study evaluated the bioefficacy of conventional and next-generation long-lasting insecticidal nets (LLINs), determined resistance profiles, and characterized molecular and metabolic mechanisms in wild Anopheles coluzzii from South-East Côte d’Ivoire in 2019.
Results
Phenotypic resistance was intense: more than 25% of mosquitoes survived exposure to ten times the doses of pyrethroids required to kill susceptible populations. Similarly, 24-hour mortality to deltamethrin-only LLINs was very low and not significantly different to an untreated net. Sub-lethal pyrethroid exposure did not induce significant delayed vector mortality 72 hours later. In contrast, LLINs containing the synergist piperonyl butoxide (PBO), or new insecticides, clothianidin and chlorfenapyr, were highly toxic to An. coluzzii. Pyrethroid-susceptible An. coluzzii were significantly more likely to be infected with malaria, compared to those that survived insecticidal exposure. Pyrethroid resistance was associated with significant over-expression of CYP6P4, CPY6Z1 and CYP6P3.
Conclusions
Study findings raise concerns regarding the operational failure of standard LLINs and support the urgent deployment of vector control interventions incorporating PBO, chlorfenapyr or clothianidin in areas of high resistance intensity in Côte d'Ivoire.
Surveillance of malaria vector species and the monitoring of insecticide resistance are essential to inform malaria control strategies and support the reduction of infections and disease. Genetic barcoding of mosquitoes is a useful tool to assist the high-throughput surveillance of insecticide resistance, discriminate between sibling species and to detect the presence of Plasmodium infections. In this study, we combined multiplex PCR, custom designed dual indexing, and Illumina next generation sequencing for high throughput single nucleotide polymorphism (SNP)-profiling of four species from the Anopheles (An.) gambiae complex (An. gambiae sensu stricto, An. coluzzii, An. arabiensis and An. melas). By amplifying and sequencing only 14 genetic fragments (500 bp each), we were able to simultaneously detect Plasmodium infection; insecticide resistance-conferring SNPs in ace1, gste2, vgsc and rdl genes; the partial sequences of nuclear ribosomal internal transcribed spacers (ITS1 and ITS2) and intergenic spacers (IGS), Short INterspersed Elements (SINE), as well as mitochondrial genes (cox1 and nd4) for species identification and genetic diversity. Using this amplicon sequencing approach with the four selected An. gambiae complex species, we identified a total of 15 non-synonymous mutations in the insecticide target genes, including previously described mutations associated with resistance and two new mutations (F1525L in vgsc and D148E in gste2). Overall, we present a reliable and cost-effective high-throughput panel for surveillance of An. gambiae complex mosquitoes in malaria endemic regions.
Background
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide. A comprehensive and detailed understanding of COPD care pathways from pre-diagnosis to acute care is required to understand the common barriers to optimal COPD care across diverse health systems.
Methods
Country-specific COPD care pathways were created for four high-income countries using international recommendations and country-specific guidelines, then populated with published epidemiological, clinical, and economic data. To refine and validate the pathways, semi-structured interviews using pre-prepared discussion guides and country-specific pathway maps were held with twenty-four primary and secondary care respiratory healthcare professionals. Thematic analysis was then performed on the interview transcripts.
Results
The COPD care pathway showed broad consistency across the countries. Three key themes relating to barriers in optimal COPD management were identified across the countries: journey to diagnosis, treatment, and the impact of COVID-19. Common barriers included presentation to healthcare with advanced COPD, low COPD consideration, and sub-optimal acute and chronic disease management. COVID-19 has negatively impacted disease management across the pathway but presents opportunities to retain virtual consultations. Structural factors such as insurance and short duration of appointments also impacted the diagnosis and management of COPD.
Conclusion
COPD is an important public health issue that needs urgent prioritization. The use of Evidenced Care Pathways with decision-makers can facilitate evidence-based decision making on interventions and policies to improve care and outcomes for patients and reduce unnecessary resource use and associated costs for the healthcare provider/payer.
BackgroundResistance to major public health insecticides in Côte d’Ivoire has intensified and now threatens the long-term effectiveness of malaria vector control interventions.MethodsThis study evaluated the bioefficacy of conventional and next-generation long-lasting insecticidal nets (LLINs), determined resistance profiles, and characterized molecular and metabolic mechanisms in wild Anopheles coluzzii from South-East Côte d’Ivoire in 2019.ResultsPhenotypic resistance was intense: more than 25% of mosquitoes survived exposure to ten times the doses of pyrethroids required to kill susceptible populations. Similarly, 24-hour mortality to deltamethrin-only LLINs was very low and not significantly different to an untreated net. Sub-lethal pyrethroid exposure did not induce significant delayed vector mortality 72 hours later. In contrast, LLINs containing the synergist piperonyl butoxide (PBO), or new insecticides, clothianidin and chlorfenapyr, were highly toxic to An. coluzzii. Pyrethroid-susceptible An. coluzzii were significantly more likely to be infected with malaria, compared to those that survived insecticidal exposure. Pyrethroid resistance was associated with significant over-expression of CYP6P4, CPY6Z1 and CYP6P3.ConclusionsStudy findings raise concerns regarding the operational failure of standard LLINs and support the urgent deployment of vector control interventions incorporating PBO, chlorfenapyr or clothianidin in areas of high resistance intensity in Côte d’Ivoire.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.