The behavior of antioxidants in emulsions is influenced by several factors such as pH and emulsifier type. This study aimed to evaluate the interaction between selected food emulsifiers, phenolic compounds, iron, and pH and their effect on the oxidative stability of n-3 polyunsaturated lipids in a 10% oil-in-water emulsion. The emulsifiers tested were Tween 80 and Citrem, and the phenolic compounds were naringenin, rutin, caffeic acid, and coumaric acid. Lipid oxidation was evaluated at all levels, that is, formation of radicals (ESR), hydroperoxides (PV), and secondary volatile oxidation products. When iron was present, the pH was crucial for the formation of lipid oxidation products. At pH 3 some phenolic compounds, especially caffeic acid, reduced Fe(3+) to Fe(2+), and Fe(2+) increased lipid oxidation at this pH compared to pH 6. Among the evaluated phenols, caffeic acid had the most significant effects, as caffeic acid was found to be prooxidative irrespective of pH, emulsifier type, and presence of iron, although the degrees of lipid oxidation were different at the different experimental conditions. The other evaluated phenols were prooxidative at pH 3 in Citrem-stabilized emulsions and had no significant effect at pH 6 in Citrem- or Tween-stabilized emulsions on the basis of the formation of volatiles. The results indicated that phenol-iron complexes/nanoparticles were formed at pH 6.
Microencapsulation of fish oil was achieved by spray-drying homogenized emulsions of fish oil using 3 different types of casein as emulsifier and lactose as filler. As the degree of aggregation of the casein emulsifier increased, the vacuole volume of the microencapsulated powders decreased. The shelf life of the powders increased as the degree of aggregation of the casein emulsifier increased at the high homogenization conditions. When micellar casein was used as emulsifier, the shelf life also increased as homogenization conditions increased. Free fat but not surface fat was inversely related to shelf life. Since the type of casein used was confounded with the powder vacuole volume, the increased shelf life may have been due to either factor.
Recent research has shown that the oxidative stability of oil-in-water emulsions is affected by the type of surfactant used as emulsifier. The aim of this study was to evaluate the effect of real food emulsifiers as well as metal chelation by EDTA and pH on the oxidative stability of a 10% n-3-enriched oil-in-water emulsion. The selected food emulsifiers were Tween 80, Citrem, sodium caseinate and lecithin. Lipid oxidation was evaluated by determination of peroxide values and secondary volatile oxidation products. Moreover, the zeta potential and the droplet sizes were determined. Tween resulted in the least oxidatively stable emulsions, followed by Citrem. When iron was present, caseinate-stabilized emulsions oxidized slower than lecithin emulsions at pH 3, whereas the opposite was the case at pH 7. Oxidation generally progressed faster at pH 3 than at pH 7, irrespective of the addition of iron. EDTA generally reduced oxidation, as evaluated by volatiles formation in all emulsions, irrespective of pH and emulsifier type, except in the lecithin and caseinate emulsions where a pro-oxidative effect was observed for some volatiles. The different effects of the emulsifier types could be related to their ability to chelate iron, scavenge free radicals, interfere with interactions between the lipid hydroperoxides and iron as well as to form a physical barrier around the oil droplets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.