SUMMARY Diffuse large B cell lymphoma (DLBCL) is the most common form of blood cancer and is characterized by a striking degree of genetic and clinical heterogeneity. This heterogeneity poses a major barrier to understanding the genetic basis of the disease and its response to therapy. Here, we performed an integrative analysis of whole exome sequencing and transcriptome sequencing in a cohort of 1001 DLBCL patients to comprehensively define the landscape of 150 genetic drivers of the disease. We characterized the functional impact of these genes using an unbiased CRISPR screen of DLBCL cell lines to define oncogenes that promote cell growth. A prognostic model comprising these genetic alterations outperformed current established methods: cell of origin, the International Prognostic Index comprising clinical variables, and dual MYC and BCL2 expression. These results comprehensively define the genetic drivers and their functional roles in DLBCL to identify new therapeutic opportunities in the disease.
T cells are important for effective viral clearance, elimination of virus-infected cells and long-term disease protection. To examine the full-spectrum of CD8+ T cell immunity in COVID-19, we experimentally evaluated 3141 major histocompatibility (MHC) class I-binding peptides covering the complete SARS-CoV-2 genome. Using DNA-barcoded peptide-MHC complex (pMHC) multimers combined with a T cell phenotype panel, we report a comprehensive list of 122 immunogenic and a subset of immunodominant SARS-CoV-2 T cell epitopes. Substantial CD8+ T cell recognition was observed in COVID-19 patients, with up to 27% of all CD8+ lymphocytes interacting with SARS-CoV-2-derived epitopes. Most immunogenic regions were derived from open reading frame (ORF) 1 and ORF3, with ORF1 containing most of the immunodominant epitopes. CD8+ T cell recognition of lower affinity was also observed in healthy donors toward SARS-CoV-2-derived epitopes. This pre-existing T cell recognition signature was partially overlapping with the epitope landscape observed in COVID-19 patients and may drive the further expansion of T cell responses to SARS-CoV-2 infection. Importantly the phenotype of the SARS-CoV-2-specific CD8+ T cells, revealed a strong T cell activation in COVID-19 patients, while minimal T cell activation was seen in healthy individuals. We found that patients with severe disease displayed significantly larger SARS-CoV-2-specific T cell populations compared to patients with mild diseases and these T cells displayed a robust activation profile. These results further our understanding of T cell immunity to SARS-CoV-2 infection and hypothesize that strong antigen-specific T cell responses are associated with different disease outcomes.
Patients with multiple myeloma (MM) suffer from a general impaired immunity comprising deficiencies in humoral responses, T‐cell responses as well as dendritic cell (DC) function. Thus, to achieve control of tumour growth through immune therapy constitutes a challenge. Careful evaluation of the immune status in patients with MM seems crucial prior to active immune therapy. We evaluated the proportion of both, DC, Treg cells and myeloid‐derived suppressor cells (MDSC) in peripheral blood from patients with MM at diagnosis and in remission as well as patients with monoclonal gammopathy of undetermined significance (MGUS). We found that the proportion of both myeloid (m) DC and plasmacytoid (p) DC in patients at diagnosis was lowered compared to control donors, while only the proportion of pDC in patients in remission and with MGUS was significantly lower than in controls. The proportion of CD4+FOXP3+ Treg cells was increased in patients at diagnosis and not in patients in remission or with MGUS. Also, Treg cells from patients with MM were functionally intact as they were able to inhibit proliferation of both CD4 and CD8 T cells. Finally, we observed an increase in the proportion of CD14+HLA‐DR−/low MDSC in patients with MM at diagnosis, illustrating that this cell fraction is also distorted in patients with MM. Taken together, our results illustrate that, both mDC, pDC, Treg cells and MDSC are affected in patients with MM underlining the fact that the immune system is dysregulated as a consequence of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.