SUMMARY Diffuse large B cell lymphoma (DLBCL) is the most common form of blood cancer and is characterized by a striking degree of genetic and clinical heterogeneity. This heterogeneity poses a major barrier to understanding the genetic basis of the disease and its response to therapy. Here, we performed an integrative analysis of whole exome sequencing and transcriptome sequencing in a cohort of 1001 DLBCL patients to comprehensively define the landscape of 150 genetic drivers of the disease. We characterized the functional impact of these genes using an unbiased CRISPR screen of DLBCL cell lines to define oncogenes that promote cell growth. A prognostic model comprising these genetic alterations outperformed current established methods: cell of origin, the International Prognostic Index comprising clinical variables, and dual MYC and BCL2 expression. These results comprehensively define the genetic drivers and their functional roles in DLBCL to identify new therapeutic opportunities in the disease.
BACKGROUND Ibrutinib is an irreversible inhibitor of Bruton’s tyrosine kinase (BTK) and is effective in chronic lymphocytic leukemia (CLL). Resistance to irreversible kinase inhibitors and resistance associated with BTK inhibition have not been characterized. Although only a small proportion of patients have had a relapse during ibrutinib therapy, an understanding of resistance mechanisms is important. We evaluated patients with relapsed disease to identify mutations that may mediate ibrutinib resistance. METHODS We performed whole-exome sequencing at baseline and the time of relapse on samples from six patients with acquired resistance to ibrutinib therapy. We then performed functional analysis of identified mutations. In addition, we performed Ion Torrent sequencing for identified resistance mutations on samples from nine patients with prolonged lymphocytosis. RESULTS We identified a cysteine-to-serine mutation in BTK at the binding site of ibrutinib in five patients and identified three distinct mutations in PLCγ2 in two patients. Functional analysis showed that the C481S mutation of BTK results in a protein that is only reversibly inhibited by ibrutinib. The R665W and L845F mutations in PLCγ2 are both potentially gain-of-function mutations that lead to autonomous B-cell–receptor activity. These mutations were not found in any of the patients with prolonged lymphocytosis who were taking ibrutinib. CONCLUSIONS Resistance to the irreversible BTK inhibitor ibrutinib often involves mutation of a cysteine residue where ibrutinib binding occurs. This finding, combined with two additional mutations in PLCγ2 that are immediately downstream of BTK, underscores the importance of the B-cell–receptor pathway in the mechanism of action of ibrutinib in CLL. (Funded by the National Cancer Institute and others.)
BACKGROUNDNo adjuvant treatment has been established for patients who remain at high risk for recurrence after neoadjuvant chemoradiotherapy and surgery for esophageal or gastroesophageal junction cancer. METHODSWe conducted CheckMate 577, a global, randomized, double-blind, placebo-controlled phase 3 trial to evaluate a checkpoint inhibitor as adjuvant therapy in patients with esophageal or gastroesophageal junction cancer. Adults with resected (R0) stage II or III esophageal or gastroesophageal junction cancer who had received neoadjuvant chemoradiotherapy and had residual pathological disease were randomly assigned in a 2:1 ratio to receive nivolumab (at a dose of 240 mg every 2 weeks for 16 weeks, followed by nivolumab at a dose of 480 mg every 4 weeks) or matching placebo. The maximum duration of the trial intervention period was 1 year. The primary end point was disease-free survival. RESULTSThe median follow-up was 24.4 months. Among the 532 patients who received nivolumab, the median disease-free survival was 22.4 months (95% confidence interval [CI], 16.6 to 34.0), as compared with 11.0 months (95% CI, 8.3 to 14.3) among the 262 patients who received placebo (hazard ratio for disease recurrence or death, 0.69; 96.4% CI, 0.56 to 0.86; P<0.001). Disease-free survival favored nivolumab across multiple prespecified subgroups. Grade 3 or 4 adverse events that were considered by the investigators to be related to the active drug or placebo occurred in 71 of 532 patients (13%) in the nivolumab group and 15 of 260 patients (6%) in the placebo group. The trial regimen was discontinued because of adverse events related to the active drug or placebo in 9% of the patients in the nivolumab group and 3% of those in the placebo group. CONCLUSIONSAmong patients with resected esophageal or gastroesophageal junction cancer who had received neoadjuvant chemoradiotherapy, disease-free survival was significantly longer among those who received nivolumab adjuvant therapy than among those who received placebo. (Funded by Bristol Myers Squibb and Ono Pharmaceutical; CheckMate 577 ClinicalTrials.gov number, NCT02743494.
Burkitt lymphoma is characterized by deregulation of MYC, but the contribution of other genetic mutations to the disease is largely unknown. Here, we describe the first completely sequenced genome from a Burkitt lymphoma tumor and germline DNA from the same affected individual. We further sequenced the exomes of 59 Burkitt lymphoma tumors and compared them to sequenced exomes from 94 diffuse large B-cell lymphoma (DLBCL) tumors. We identified 70 genes that were recurrently mutated in Burkitt lymphomas, including ID3, GNA13, RET, PIK3R1 and the SWI/SNF genes ARID1A and SMARCA4. Our data implicate a number of genes in cancer for the first time, including CCT6B, SALL3, FTCD and PC. ID3 mutations occurred in 34% of Burkitt lymphomas and not in DLBCLs. We show experimentally that ID3 mutations promote cell cycle progression and proliferation. Our work thus elucidates commonly occurring gene-coding mutations in Burkitt lymphoma and implicates ID3 as a new tumor suppressor gene.
Diffuse large B-cell lymphoma (DLBCL) is the most common form of lymphoma in adults. The disease exhibits a striking heterogeneity in gene expression profiles and clinical outcomes, but its genetic causes remain to be fully defined. Through whole genome and exome sequencing, we characterized the genetic diversity of DLBCL. In all, we sequenced 73 DLBCL primary tumors (34 with matched normal DNA). Separately, we sequenced the exomes of 21 DLBCL cell lines. We identified 322 DLBCL cancer genes that were recurrently mutated in primary DLBCLs. We identified recurrent mutations implicating a number of known and not previously identified genes and pathways in DLBCL including those related to chromatin modification (ARID1A and MEF2B), NF-κB (CARD11 and TNFAIP3), PI3 kinase (PIK3CD, PIK3R1, and MTOR), B-cell lineage (IRF8, POU2F2, and GNA13), and WNT signaling (WIF1). We also experimentally validated a mutation in PIK3CD, a gene not previously implicated in lymphomas. The patterns of mutation demonstrated a classic long tail distribution with substantial variation of mutated genes from patient to patient and also between published studies. Thus, our study reveals the tremendous genetic heterogeneity that underlies lymphomas and highlights the need for personalized medicine approaches to treating these patients.next-generation sequencing | cancer genetics | cancer heterogeneity D iffuse large B-cell lymphoma (DLBCL) is the most common form of lymphoma in adults (1). Although nearly half the patients can be cured with standard regimens, the majority of relapsed patients succumb. Thus, there is an urgent need to identify the genetic underpinnings of the disease and to identify novel treatment strategies. Gene expression profiling (2, 3) has uncovered distinct molecular signatures for DLBCL subtypes that have unique biology and prognoses. High-throughput sequencing has provided rich opportunities for the comprehensive identification of the genetic causes of cancer (4-6). Whereas exhaustive portraits of individual cancer genomes are emerging, the degree to which these genomes represent the disease is unclear.We generated a detailed analysis of a DLBCL genome by sequencing a primary human tumor and paired normal tissue (Dataset S1). We further characterized the genetic diversity of DLBCL by sequencing the exomes of 73 DLBCL primary tumors (34 with matched normal DNA) and 21 DLBCL cell lines for comparative purposes. This in-depth sequencing identified 322 DLBCL cancer genes that were recurrently mutated in DLBCLs. We also experimentally validated the effects of genetic alteration of PIK3CD, an oncogene that we identified in DLBCL. Our work provides one of the largest genetic portraits yet of human DLBCLs and offers insights into the molecular heterogeneity of the disease, especially in the context of other recently published studies in DLBCL (7, 8).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.