Burkitt lymphoma is characterized by deregulation of MYC, but the contribution of other genetic mutations to the disease is largely unknown. Here, we describe the first completely sequenced genome from a Burkitt lymphoma tumor and germline DNA from the same affected individual. We further sequenced the exomes of 59 Burkitt lymphoma tumors and compared them to sequenced exomes from 94 diffuse large B-cell lymphoma (DLBCL) tumors. We identified 70 genes that were recurrently mutated in Burkitt lymphomas, including ID3, GNA13, RET, PIK3R1 and the SWI/SNF genes ARID1A and SMARCA4. Our data implicate a number of genes in cancer for the first time, including CCT6B, SALL3, FTCD and PC. ID3 mutations occurred in 34% of Burkitt lymphomas and not in DLBCLs. We show experimentally that ID3 mutations promote cell cycle progression and proliferation. Our work thus elucidates commonly occurring gene-coding mutations in Burkitt lymphoma and implicates ID3 as a new tumor suppressor gene.
• We identified novel recurrently mutated genes, including WHSC1, RB1, POT1, and SMARCA4, through exome sequencing of 56 cases of MCL.• Genetic mutations defining MCL and Burkitt lymphoma were associated with the epigenetically defined chromatin state of their respective B cells of origin.In this study, we define the genetic landscape of mantle cell lymphoma (MCL) through exome sequencing of 56 cases of MCL. We identified recurrent mutations in ATM, CCND1, MLL2, and TP53. We further identified a number of novel genes recurrently mutated in patients with MCL including RB1, WHSC1, POT1, and SMARCA4. We noted that MCLs have a distinct mutational profile compared with lymphomas from other B-cell stages.The ENCODE project has defined the chromatin structure of many cell types. However, a similar characterization of primary human mature B cells has been lacking. We defined, for the first time, the chromatin structure of primary human naïve, germinal center, and memory B cells through chromatin immunoprecipitation and sequencing for H3K4me1, H3K4me3, H3Ac, H3K36me3, H3K27me3, and PolII. We found that somatic mutations that occur more frequently in either MCLs or Burkitt lymphomas were associated with open chromatin in their respective B cells of origin, naïve B cells, and germinal center B cells. Our work thus elucidates the landscape of gene-coding mutations in MCL and the critical interplay between epigenetic alterations associated with B-cell differentiation and the acquisition of
Edited by Laszlo NagyKeywords: MicroRNA Macrophage Lipoprotein Toll-like receptor 4 Atherosclerosis a b s t r a c t Atherosclerosis is an inflammatory process due to oxidized low-density lipoprotein (oxLDL) accumulation in macrophages. We investigated the involvement of microRNAs in oxLDL accumulation and inflammatory response in macrophages. The expression of miR-146a decreases under oxLDL stimulation. MiR-146a significantly reduces intracellular LDL cholesterol content and secretion of interleukin 6, interleukin 8, chemokine (C-C motif) ligand 2 and matrix metallopeptidase 9. Toll-like receptor 4 (TLR4) is a relevant target of miR-146a, and miR-146a inhibits the activation of TLR4-dependent intracellular signaling pathways involved in cytoskeleton rearrangement, lipid uptake, and inflammatory cytokine secretion. These results indicate that miR-146a contributes to the regulation of both oxLDL accumulation and inflammatory response by negatively regulating TLR4 and thereby inhibiting the activation of TLR4-dependent signaling pathways. Over-expression of miR146a may be useful in the prevention and treatment of atherosclerosis.
BackgroundTemporal lobe epilepsy (TLE) is often characterized pathologically by severe neuronal loss in the hippocampus. Understanding the mechanisms of neuron death is key to preventing the neurodegeneration associated with TLE. However, the involvement of neuronal loss to the epileptogenic process has yet to be fully determined. Recent studies have shown that the activation of NLRP1 can generate a functional caspase-1-containing inflammasome in vivo to drive the proinflammatory programmed cell death termed ‘pyroptosis’, which has a key role in the pathogenesis of neurological disorders. To the best of our knowledge, there are no reported studies that performed detailed identification and validation of NLRP1 inflammasome during the epileptogenic process.MethodsWe first compared expression of NLRP1 and caspase-1 in resected hippocampus from patients with intractable mesial temporal lobe epilepsy (mTLE) with that of matched control samples. To further examine whether the activation of NLRP1 inflammasome contributes to neuronal pyroptosis, we employed a nonviral strategy to knock down the expression of NLRP1 and caspase-1 in the amygdala kindling-induced rat model. Proinflammatory cytokines levels and hippocampal neuronal loss were evaluated after 6 weeks of treatment in these NLRP1 or caspase-1 deficiency TLE rats.ResultsWestern blotting detected upregulated NLRP1 levels and active caspase-1 in mTLE patients in comparison to those levels seen in the controls, suggesting a role for this inflammasome in mTLE. Moreover, we employed direct in vivo infusion of nonviral small interfering RNA to knockdown NLRP1 or caspase-1 in the amygdala kindling-induced rat model, and discovered that these NLRP1 or caspase-1 silencing rats resulted in significantly reduced neuronal pyroptosis.ConclusionsOur data suggest that NLRP1/caspase-1 signaling participates in the seizure-induced degenerative process in humans and in the animal model of TLE and points to the silencing of NLRP1 inflammasome as a promising strategy for TLE therapy.Electronic supplementary materialThe online version of this article (doi:10.1186/s12974-014-0233-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.