BackgroundTemporal lobe epilepsy (TLE) is often characterized pathologically by severe neuronal loss in the hippocampus. Understanding the mechanisms of neuron death is key to preventing the neurodegeneration associated with TLE. However, the involvement of neuronal loss to the epileptogenic process has yet to be fully determined. Recent studies have shown that the activation of NLRP1 can generate a functional caspase-1-containing inflammasome in vivo to drive the proinflammatory programmed cell death termed ‘pyroptosis’, which has a key role in the pathogenesis of neurological disorders. To the best of our knowledge, there are no reported studies that performed detailed identification and validation of NLRP1 inflammasome during the epileptogenic process.MethodsWe first compared expression of NLRP1 and caspase-1 in resected hippocampus from patients with intractable mesial temporal lobe epilepsy (mTLE) with that of matched control samples. To further examine whether the activation of NLRP1 inflammasome contributes to neuronal pyroptosis, we employed a nonviral strategy to knock down the expression of NLRP1 and caspase-1 in the amygdala kindling-induced rat model. Proinflammatory cytokines levels and hippocampal neuronal loss were evaluated after 6 weeks of treatment in these NLRP1 or caspase-1 deficiency TLE rats.ResultsWestern blotting detected upregulated NLRP1 levels and active caspase-1 in mTLE patients in comparison to those levels seen in the controls, suggesting a role for this inflammasome in mTLE. Moreover, we employed direct in vivo infusion of nonviral small interfering RNA to knockdown NLRP1 or caspase-1 in the amygdala kindling-induced rat model, and discovered that these NLRP1 or caspase-1 silencing rats resulted in significantly reduced neuronal pyroptosis.ConclusionsOur data suggest that NLRP1/caspase-1 signaling participates in the seizure-induced degenerative process in humans and in the animal model of TLE and points to the silencing of NLRP1 inflammasome as a promising strategy for TLE therapy.Electronic supplementary materialThe online version of this article (doi:10.1186/s12974-014-0233-0) contains supplementary material, which is available to authorized users.
BackgroundCholinesterase inhibitors and memantine have been approved for management of Alzheimer’s disease (AD), but there has been no consensus about the choice of various types and doses of drugs at different stages. Hence, we compared and ranked the efficacy and tolerability of these available drugs.MethodsWe searched PubMed, the Cochrane Central Register of Controlled Trials, and Embase for randomized controlled trials (RCTs) published from database inception to July 21, 2017. The primary outcomes were the mean overall changes in cognitive function and responders who had any adverse events. We conducted a random-effects network meta-analysis.ResultsForty-one RCTs were included in this study. Compared with placebo, galantamine 32 mg daily (standardized mean difference – 0.51, 95% credible interval – 0.67 to − 0.35), galantamine 24 mg daily (− 0.50, − 0.61 to − 0.40), and donepezil 10 mg daily (− 0.40, − 0.51 to − 0.29) were probably the most effective agents on cognition for mild to moderate AD, and memantine 20 mg combined with donepezil 10 mg (0.76, 0.39 to 1.11) was recommended for moderate to severe patients. Memantine showed the best profile of acceptability. Rivastigmine transdermal 15-cm2 patch was the best optional treatment both in function and global changes. None of the medicines was likely to improve neuropsychiatric symptoms through this analysis.ConclusionsPharmacological interventions have beneficial effects on cognition, function, and global changes, but not on neuropsychiatric symptoms, through current network meta-analysis. The choice of drugs may mainly depend on the disease severity and clinical symptoms.Electronic supplementary materialThe online version of this article (10.1186/s13195-018-0457-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.