Insulin-dependent or type 1 diabetes is a prototypic autoimmune disease whose incidence steadily increased over the past decades in industrialized countries. Recent evidence suggests the importance of the gut microbiota to explain this trend. Here, non-obese diabetic (NOD) mice that spontaneously develop autoimmune type 1 diabetes were treated with different antibiotics to explore the influence of a targeted intestinal dysbiosis in the progression of the disease. A mixture of wide spectrum antibiotics (i.e. streptomycin, colistin and ampicillin) or vancomycin alone were administered orally from the moment of conception, treating breeding pairs, and during the postnatal and adult life until the end of follow-up at 40 weeks. Diabetes incidence significantly and similarly increased in male mice following treatment with these two antibiotic regimens. In NOD females a slight yet not significant trend towards an increase in disease incidence was observed. Changes in gut microbiota composition were assessed by sequencing the V3 region of bacterial 16S rRNA genes. Administration of the antibiotic mixture resulted in near complete ablation of the gut microbiota. Vancomycin treatment led to increased Escherichia, Lactobacillus and Sutterella genera and decreased members of the Clostridiales order and Lachnospiraceae, Prevotellaceae and Rikenellaceae families, as compared to control mice. Massive elimination of IL-17-producing cells, both CD4+TCRαβ+ and TCRγδ+ T cells was observed in the lamina propria of the ileum and the colon of vancomycin-treated mice. These results show that a directed even partial ablation of the gut microbiota, as induced by vancomycin, significantly increases type 1 diabetes incidence in male NOD mice thus prompting for caution in the use of antibiotics in pregnant women and newborns.
Septic syndrome is the leading cause of mortality for critically ill patients worldwide. Patients develop lymphocyte dysfunctions associated with increased risk of death and nosocomial infections. In this study, we performed preclinical experiments testing the potential of recombinant human IL-7 (rhIL-7) as a lymphostimulating therapy in sepsis. Circulating IL-7 and soluble IL-7 receptor α-chain (soluble CD127) concentrations were measured in plasma, whereas cellular CD127 expression was evaluated on circulating CD4+ and CD8+ lymphocytes from septic shock patients and healthy volunteers. Lymphocyte proliferation, IFN-γ production, STAT5 phosphorylation, and B cell lymphoma 2 induction were measured ex vivo in response to T cell stimulation in the presence or not of rhIL-7. We show that IL-7 pathway (plasmatic IL-7 concentration and cellular and soluble CD127 expressions) is not overtly altered and remains activable in septic patients. Most importantly ex vivo treatment of patients’ cells with rhIL-7 significantly improves lymphocyte functionality (CD4+ and CD8+ lymphocyte proliferations, IFN-γ production, STAT5 phosphorylation, and B cell lymphoma 2 induction after stimulation). To our knowledge, this constitutes the first report of rhIL-7 ability to restore normal lymphocyte functions in septic patients. These results support the rational for initiating a clinical trial testing rhIL-7 in septic shock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.