Membrane-bound cytochrome c oxidase catalyzes cell respiration in aerobic organisms and is a primary energy transducer in biology. The two halves of the catalytic cycle may be studied separately: in an oxidative phase, the enzyme is oxidized by O 2, and in a reductive phase, the oxidized enzyme is reduced before binding the next O 2 molecule. Here we show by time-resolved membrane potential and pH measurements with cytochrome oxidase liposomes that, with both phases in succession, two protons are translocated during each phase, one during each individual electron transfer step. However, when the reductive phase is not immediately preceded by oxidation, it follows a different reaction pathway no longer coupled to proton pumping. Metastable states with altered redox properties of the metal centers are accessed during turnover and relax when external electron donors are exhausted but recover after enzyme reduction and reoxidation by O 2. The efficiency of ATP synthesis might be regulated by switching between the two catalytic pathways.
Proton translocation coupled to oxidation of ubiquinol by O2 was studied in spheroplasts of two mutant strains of Escherichia coli, one of which expresses cytochrome d, but not cytochrome bo, and the other expressing only the latter. O2 pulse experiments revealed that cytochrome d catalyzes separation of the protons and electrons of ubiquinol oxidation but is not a proton pump. In contrast, cytochrome bo functions as a proton pump in addition to separating the charges of quinol oxidation. E. coli membranes and isolated cytochrome bo lack the CuA center typical of cytochrome c oxidase, and the isolated enzyme contains only 1Cu/2Fe. Optical spectra indicate that high-spin heme o contributes less than 10% to the reduced minus oxidized 560-nm band of the enzyme. Pyridine hemochrome spectra suggest that the hemes of cytochrome bo are not protohemes. Proteoliposomes with cytochrome bo exhibited good respiratory control, but H+/e- during quinol oxidation was only 0.3-0.7. This was attributed to an "inside out" orientation of a significant fraction of the enzyme. Possible metabolic benefits of expressing both cytochromes bo and d in E. coli are discussed.
The terminal quinol oxidase, cytochrome bo, of Escherichia coli is a member of the large terminal oxidase family, which includes cytochrome aa3-type terminal oxidases from bacteria, plants, and animals. These enzymes conserve energy by linking electron transfer to vectorial proton translocation across mitochondrial or bacterial cell membranes. Site-directed mutagenesis of the five most highly conserved acidic amino acids in subunit I of cytochrome bo was performed to study their role in proton transfer. Mutation of only one of these sites, Asp135, to the corresponding amide, results in a dramatic decrease in proton pumping but with little change in electron-transfer activity. However, the conservative mutation Asp135Glu is active in proton translocation. It is proposed that an acidic residue at position 135 in subunit I may be important to form a functional proton input channel of the proton pump.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.