Routinely collected electronic health records (EHR) in clinical information systems (CIS) are often heterogeneous, have inconsistent data formats and lack of documentation. We use the well-known open-source database schema of MIMIC-IV to address this issue aiming to support collaborative secondary analysis. Over 154 million data records from a German ICU have already been mapped and inserted into the schema successfully. However, discrepancies between the German and US health systems as well as specifics in our clinical source data hinder the direct translation to MIMIC. Evaluating and improving mapping completeness is part of the ongoing research.
Alarms help to detect medical conditions in intensive care units and improve patient safety. However, up to 99% of alarms are non-actionable, i.e. alarm that did not trigger a medical intervention in a defined time frame. Reducing their amount through machine learning (ML) is hypothesized to be a promising approach to improve patient monitoring and alarm management. This retrospective study presents the technical and medical pre-processing steps to annotate alarms into actionable and non-actionable, creating a basis for ML applications.
Intensive care units (ICU) are often overflooded with alarms from monitoring devices which constitutes a hazard to both staff and patients. To date, the suggested solutions to excessive monitoring alarms have remained on a research level. We aimed to identify patient characteristics that affect the ICU alarm rate with the goal of proposing a straightforward solution that can easily be implemented in ICUs. Alarm logs from eight adult ICUs of a tertiary care university-hospital in Berlin, Germany were retrospectively collected between September 2019 and March 2021. Adult patients admitted to the ICU with at least 24 h of continuous alarm logs were included in the study. The sum of alarms per patient per day was calculated. The median was 119. A total of 26,890 observations from 3205 patients were included. 23 variables were extracted from patients' electronic health records (EHR) and a multivariable logistic regression was performed to evaluate the association of patient characteristics and alarm rates. Invasive blood pressure monitoring (adjusted odds ratio (aOR) 4.68, 95%CI 4.15–5.29, p < 0.001), invasive mechanical ventilation (aOR 1.24, 95%CI 1.16–1.32, p < 0.001), heart failure (aOR 1.26, 95%CI 1.19–1.35, p < 0.001), chronic renal failure (aOR 1.18, 95%CI 1.10–1.27, p < 0.001), hypertension (aOR 1.19, 95%CI 1.13–1.26, p < 0.001), high RASS (aOR 1.22, 95%CI 1.18–1.25, p < 0.001) and scheduled surgical admission (aOR 1.22, 95%CI 1.13–1.32, p < 0.001) were significantly associated with a high alarm rate. Our study suggests that patient-specific alarm management should be integrated in the clinical routine of ICUs. To reduce the overall alarm load, particular attention regarding alarm management should be paid to patients with invasive blood pressure monitoring, invasive mechanical ventilation, heart failure, chronic renal failure, hypertension, high RASS or scheduled surgical admission since they are more likely to have a high contribution to noise pollution, alarm fatigue and hence compromised patient safety in ICUs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.