Poly(ethyleneimine) (PEI) microcapsules containing laccase from Trametes hirsuta (ThL) and Trametes versicolor (TvL) were printed onto paper substrate by three different methods: screen printing, rod coating, and flexo printing. Microcapsules were fabricated via interfacial polycondensation of PEI with the cross-linker sebacoyl chloride, incorporated into an ink, and printed or coated on the paper substrate. The same ink components were used for three printing methods, and it was found that laccase microcapsules were compatible with the ink. Enzymatic activity of microencapsulated TvL was maintained constant in polymer-based ink for at least eight weeks. Thick layers with high enzymatic activity were obtained when laccase-containing microcapsules were screen printed on paper substrate. Flexo printed bioactive paper showed very low activity, since by using this printing method the paper surface was not fully covered by enzyme microcapsules. Finally, screen printing provided a bioactive paper with high water-resistance and the highest enzyme lifetime.
Three laccases, functioning in mild acidic, and one in slightly alkaline conditions, were evaluated in order to reduce low-molecular phenolic VOCs of kraft lignins, which could be used in lignin/natural fibers composites. The potential of a sulfhydryl oxidase to catalyze the oxidation of sulfur containing VOCs (thiols) was also tested in combination with the laccase-catalyzed oxidation. In addition, oxidation at alkaline pH at room temperature that may induce polymerization of phenolics in an analogous manner to the laccase-catalyzed reaction was investigated. Enzyme reactivity towards lignin was evaluated as consumption of oxygen in the reaction solution. The effect of treatments on VOC reduction was determined both by sensing (odorimetry) and chemical (TD-GC/MS, SEC) analyses. Laccases, Lcc2, and MaL from Thielavia arenaria and Melanocarpus albomyces, respectively, showed potential in reducing odors. The most promising results were obtained by oxidizing lignin with O2 at alkaline pH. However, the odor threshold values of the main VOC compounds are extremely low, which poses a challenge to VOC reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.