The usage of antimicrobial drugs (AMs) leads to an increase in antimicrobial resistance (AMR). Although different antimicrobial usage (AMU) monitoring programs exist for livestock animals in Germany, there is no such system for horses. However, with the increasing usage of electronic practice management software (EPMS), it is possible to analyze electronic field data generated for routine purposes. The aim of this study was to generate AMU data for German horses with data from the Clinic for Horses (CfH), University of Veterinary Medicine Hannover (TiHo), and in addition to show that different processes of data curation are necessary to provide results, especially considering quantitative indices. In this investigation, the number of antimicrobial doses used and the amount and percentage of active ingredients applied were calculated. Data contained all drugs administered between the 1st of January and the 31st of December 2017. A total of 2,168 horses were presented for veterinary care to the CfH and 34,432 drug applications were documented for 1,773 horses. Of these, 6,489 (18.85%) AM applications were documented for 837 (47.21%) horses. In 2017, 162.33 kg of active ingredients were documented. The most commonly used antibiotic classes were sulfonamides (84.32 kg; 51.95 %), penicillins (30.11 kg; 18.55%) and nitroimidazoles (24.84 kg; 15.30%). In 2017, the proportion of Critically Important Antibiotics (CIA)-Highest Priority used was 0.15% (0.24 kg) and the proportion of CIA-High Priority used was 20.85% (33.85 kg). Of the total 9,402 entries of antimicrobial active ingredients, the three with the largest number used were sulfonamides [n = 2,798 (29.76%)], trimethoprim [n = 2,757 (29.76%)] and aminoglycosides [n = 1,381 (14.69%)]. Comparison between Administered Daily Dose (ADA) and Recommended Daily Dose of CfH (RDD CfH), showed that 3.26% of ADA were below RDD CfH , 3.18% exceeded RDD CfH and 93.55% were within the range around RDD CfH. This study shows that data generated by an EPMS can be evaluated once the method is set up and validated. The method can be transferred to evaluate data from the EPMS of other clinics or animal species, but the transferability depends on the quality of AMU documentation and close cooperation with respective veterinarians is essential.
In contrast to food-producing animals, where the documentation of the usage of antimicrobials is regulated by law, antimicrobial usage (AMU) in dogs and cats is only sparsely monitored. We collected data generated by an electronic practice management software (EPMS) between January 1, 2017 and December 31, 2018 to investigate AMU. All information was obtained from clinical routine data from the Department of Small Animal Medicine and Surgery (DSAM), University of Veterinary Medicine Hannover (TiHo). In 2017, 78,076 drug administrations were documented for 5,471 dogs and cats, of which 14,020 (17.96%) were antimicrobial drugs (AMs) specifically documented in 2,910 (51.31%) dogs and cats. In 2018, 104,481 drug administrations were documented for 5,939 dogs and cats. Of these drug administrations, 18,170 (17.39%) AM administrations were documented for 3,176 (53.48%) dogs and cats. Despite the increasing documentation of AM administrations, differences between 2017 and 2018 were not statistically significant [odds ratio (OR), 1.01; 95% confidence interval (CI), 0.98–1.03]. Prescription diversity (PD) in 2017 for dogs was 0.92 and for cats 0.89. In 2018, PD for dogs was 0.93 and for cats 0.88. As well as the documented number of AM administrations, the documented amount of active ingredients administered in 2018 (total: 17.06 kg; dogs: 16.11 kg, cats: 0.96 kg) increased compared with 2017 (total: 15.60 kg; dogs: 14.80 kg, cats: 0.80 kg). In 2017 and 2018, the most commonly administered antimicrobial groups were penicillins, nitroimidazoles, and quinolones for dogs and cats, respectively. While the in-house point-of-care administration accounts for the largest share of the documented amount of AMs administered, the highest number of documented AM administrations was assigned to inpatient care in 2017 and 2018, respectively. However, AM administration in outpatient care remained the lowest in both years. Since no statistically significant difference in AM administrations was observed between 2017 and 2018 and the most commonly used AMs at the DSAM were ranked, data can be used as a baseline to evaluate how changes in in-house guidelines and future legal requirements affect the prescribing culture. Data generated within the DSAM should be evaluated annually.
Background: Excessive use of antimicrobials and the increasing occurrence of antimicrobial resistance are major challenges in both human and veterinary medicine. The role of prophylactic antimicrobial therapy in orthopaedic and neurosurgeries in dogs can be questioned. The aim of this study was to evaluate the rate of surgical site infections (SSI) and urinary tract infections (UTI) in dogs after cessation of antibiotics following spinal surgery. Methods: Electronic patient records from January 2018 to December 2019 were retrospectively reviewed to identify dogs that underwent spinal surgery (n = 158). Antimicrobial drug use and the presence of SSI and UTI were recorded. Results: Overall, SSI developed in 1.3% of dogs that underwent spinal surgery, while UTI developed in 8.2%. Multidrug-resistant (MDR) bacteria were detected in 5.1% of dogs. The rates of SSI, UTI and MDR did not differ significantly between dogs that received postoperative antimicrobial therapy and those that did not. Limitations:The main limitation of this study was its retrospective design. Conclusion:Overall, the SSI rate in this study was low. Cessation of postoperative antimicrobial use in dogs following spinal surgery did not have a negative effect on either SSI development or the occurrence of UTI.
Antimicrobial usage in both human and veterinary medicine is considered one of the main drivers of antimicrobial resistance; its reduction poses a serious challenge. To analyse the associations between usage and resistance, data from monitoring systems and classification of all antimicrobial substances are crucial. In this analysis, we investigated longitudinal data collected between 2013 and 2020 within the Veterinary Consumption of Antibiotics project from pig farms in Germany, including all antimicrobial classes, but focusing on critically important antimicrobials: third- and fourth-generation cephalosporins, fluoroquinolones, macrolides, and polymyxins. Analysing the treatment frequency, we found that a reduction in antimicrobial use in all types of pig production has occurred over time, accompanied by a rising percentage of farms without any usage. The lists of the World Health Organisation, World Organisation for Animal Health, and European Medicine Agency classify different antimicrobial substances as critically important. The vast differences between the respective weighted treatment frequencies allocated to the antimicrobials of main interest reflect the huge impact of the three categorisation systems. We concluded that, with the aim of creating national treatment guidelines supporting veterinarians to make treatment decisions, the list of the European Medicine Agency is the most suitable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.