Aniridia is an inherited ocular disorder of variable expressivity characterized by iris hypoplasia. A candidate aniridia gene, AN, which is the human homologue of the mouse Pax-6 gene, has recently been isolated by positional cloning from the WAGR region of 11p13. Here we describe mutations in this gene in two cases of sporadic aniridia, one detected at the DNA level and one at the RNA level, both of which are predicted to affect protein function. Mutations in Pax-6 have been described previously in Small eye, the proposed mouse model for aniridia. We present new phenotypic evidence for the validity of this mouse model.
The transcription factor PAX6 plays a critical, evolutionarily conserved role in eye, brain and olfactory development. Homozygous loss of PAX6 function affects all expressing tissues and is neonatally lethal; heterozygous null mutations cause aniridia in humans and the Small eye (Sey) phenotype in mice. Several upstream and intragenic PAX6 control elements have been defined, generally through transgenesis. However, aniridia cases with chromosomal rearrangements far downstream of an intact PAX6 gene suggested a requirement for additional cis-acting control for correct gene expression. The likely location of such elements is pinpointed through YAC transgenic studies. A 420 kb yeast artificial chromosome (YAC) clone, extending well beyond the most distant patient breakpoint, was previously shown to rescue homozygous Small eye lethality and correct the heterozygous eye phenotype. We now show that a 310 kb YAC clone, terminating just 5' of the breakpoint, fails to influence the Sey phenotypes. Using evolutionary sequence comparison, DNaseI hypersensitivity analysis and transgenic reporter studies, we have identified a region, >150 kb distal to the major PAX6 promoter P1, containing regulatory elements. Components of this downstream regulatory region drive reporter expression in distinct partial PAX6 patterns, indicating that the functional PAX6 gene domain extends far beyond the transcription unit.
Gene duplication is a major driver of evolutionary divergence. In most vertebrates a single PAX6 gene encodes a transcription factor required for eye, brain, olfactory system, and pancreas development. In zebrafish, following a postulated whole-genome duplication event in an ancestral teleost, duplicates pax6a and pax6b jointly fulfill these roles. Mapping of the homozygously viable eye mutant sunrise identified a homeodomain missense change in pax6b, leading to loss of target binding. The mild phenotype emphasizes role-sharing between the co-orthologues. Meticulous mapping of isolated BACs identified perturbed synteny relationships around the duplicates. This highlights the functional conservation of pax6 downstream (3′) control sequences, which in most vertebrates reside within the introns of a ubiquitously expressed neighbour gene, ELP4, whose pax6a-linked exons have been lost in zebrafish. Reporter transgenic studies in both mouse and zebrafish, combined with analysis of vertebrate sequence conservation, reveal loss and retention of specific cis-regulatory elements, correlating strongly with the diverged expression of co-orthologues, and providing clear evidence for evolution by subfunctionalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.