As an everyday beverage, coffee is consumed worldwide, generating a high amount of waste after brewing, which needs attention for its disposal. These residues are referred to as spent coffee grounds (SCGs), which have been shown to have applications as polymers/composites precursors, biofuels, and biofertilizers. This review focuses on agricultural applications usually based on organic matter to fertilize the soil and consequently improve plant growth. To date, SCGs have been shown to exhibit outstanding performance when applied as soil amendment and composting because it is a nutrient-rich organic waste without heavy metals. Therefore, this review presents the different options to use SCGs in agriculture. First, SCG composition using different characterization techniques is presented to identify the main components. Then, a review is presented showing how SCG toxicity can be resolved when used alone in the soil, especially at high concentrations. In this case, SCG is shown to be effective not only to enhance plant growth, but also to enhance nutritional values without impacting the environment while substituting conventional fertilizers. Finally, a conclusion is presented with openings for future developments.
This work investigated the addition of spent coffee grounds (SCG) as a valuable resource to produce biocomposites based on polylactic acid (PLA). PLA has a positive biodegradation effect but generates poor proprieties, depending on its molecular structure. The PLA and SCG (0, 10, 20 and 30 wt.%) were mixed via twin-screw extrusion and molded by compression to determine the effect of composition on several properties, including mechanical (impact strength), physical (density and porosity), thermal (crystallinity and transition temperature) and rheological (melt and solid state). The PLA crystallinity was found to increase after processing and filler addition (34–70% in the 1st heating) due to a heterogeneous nucleation effect, leading to composites with lower glass transition temperature (1–3 °C) and higher stiffness (~15%). Moreover, the composites had lower density (1.29, 1.24 and 1.16 g/cm3) and toughness (30.2, 26.8 and 19.2 J/m) as the filler content increased, which is associated with the presence of rigid particles and residual extractives from SCG. In the melt state, polymeric chain mobility was enhanced, and composites with a higher filler content became less viscous. Overall, the composite with 20 wt.% SCG provided the most balanced properties being similar to or better than neat PLA but at a lower cost. This composite could be applied not only to replace conventional PLA products, such as packaging and 3D printing, but also to other applications requiring lower density and higher stiffness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.