In any given matrix control over the final particle size distribution requires a constitutive understanding of the mechanisms and kinetics of the particle evolution. In this contribution we report on the formation mechanism of silver nanoparticles embedded in a soda-lime silicate glass matrix. For the silver ion-exchanged glass it is shown that at temperatures below 410 °C only molecular clusters (diameter <1 nm) are forming which are most likely silver dimers. These clusters grow to nanoparticles (diameter >1 nm) by annealing above this threshold temperature of 410 °C. It is evidenced that the growth and thus the final silver nanoparticle size are determined by matrix-assisted reduction mechanisms. As a consequence, particle growth proceeds after the initial formation of stable clusters by addition of silver monomers which diffuse from the glass matrix. This is in contrast to the widely accepted concept of particle growth in metal-glass systems, in which it is assumed that the nanoparticle formation is predominantly governed by Ostwald ripening processes.
We report on the formation of silver subsurface ion-exchanged metal oxide (silver SIMO) glasses and their surface-enhanced Raman scattering (SERS) activity. The samples were prepared by a combined thermal and chemical three-step methodology and characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), environmental electron scanning microscopy (ESEM), and UV/Vis spectroscopy. This unique method provides SERS substrates with protection against contamination and strong, reliable and reproducible SERS enhancement. The Raman enhancement factors of the long-term stable SIMO glasses were estimated to approximately 10(7).
A unique direct electrodeposition technique involving very high current densities, high voltages and high electrolyte concentrations is applied for highly selective mass synthesis of stable, isolable, surfactant-free, single-crystalline Bi hexagons on a Cu wire at room temperature. A formation mechanism of the hexagons is proposed. The morphology, phase purity, and crystallinity of the material are well characterized by FESEM, AFM, TEM, SAED, EDX, XRD, and Raman spectroscopy. The thermal stability of the material under intense electron beam and intense laser light irradiation is studied. The chemical stability of elemental Bi in nitric acid shows different dissolution rates for different morphologies. This effect enables a second way for the selective fabrication of Bi hexagons. Bi hexagons can be oxidized exclusively to α-Bi(2)O(3) hexagons. The Bi hexagons are found to be promising for thermoelectric applications. They are also catalytically active, inducing the reduction of 4-nitrophenol to 4-aminophenol. This electrodeposition methodology has also been demonstrated to be applicable for synthesis of bismuth-based bimetallic hybrid composites for advanced applications.
A novel method for fabricating silver-based SERS-active substrates is reported by K. Rademann et al. on p. 1683. Long-term stable (more than two years) silver ion-exchanged metal-oxide glasses conserve silver nanoparticles in the subsurface region. Etching the protective glass surface activates the substrate. When exposed to analyte molecules, a strong Raman enhancement can be recorded as a SERS spectrum. The picture shows adenine as a test molecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.