Large earthquakes produce crustal deformation that can be quantified by geodetic measurements, allowing for the determination of the slip distribution on the fault. We used data from Global Positioning System (GPS) networks in Central Chile to infer the static deformation and the kinematics of the 2010 moment magnitude (M(w)) 8.8 Maule megathrust earthquake. From elastic modeling, we found a total rupture length of ~500 kilometers where slip (up to 15 meters) concentrated on two main asperities situated on both sides of the epicenter. We found that rupture reached shallow depths, probably extending up to the trench. Resolvable afterslip occurred in regions of low coseismic slip. The low-frequency hypocenter is relocated 40 kilometers southwest of initial estimates. Rupture propagated bilaterally at about 3.1 kilometers per second, with possible but not fully resolved velocity variations.
A unique GPS velocity field that spans the entire Southeast Asia region is presented. It is based on 10 years (1994–2004) of GPS data at more than 100 sites in Indonesia, Malaysia, Thailand, Myanmar, the Philippines, and Vietnam. The majority of the horizontal velocity vectors have a demonstrated global accuracy of ∼1 mm/yr (at 95% confidence level). The results have been used to (better) characterize the Sundaland block boundaries and to derive a new geokinematic model for the region. The rotation pole of the undeformed core of the Sundaland block is located at 49.0°N–94.2°E, with a clockwise rotation rate of 0.34°/Myr. With respect to both geodetically and geophysically defined Eurasia plate models, Sundaland moves eastward at a velocity of 6 ± 1 to 10 ± 1 mm/yr from south to north, respectively. Contrary to previous studies, Sundaland is shown to move independently with respect to South China, the eastern part of Java, the island of Sulawesi, and the northern tip of Borneo. The Red River fault in South China and Vietnam is still active and accommodates a strike‐slip motion of ∼2 mm/yr. Although Sundaland internal deformation is general very small (less than 7 nanostrain/yr), important accumulation of elastic deformation occurs along its boundaries with fast‐moving neighboring plates. In particular in northern Sumatra and Malaysia, inland‐pointing trench‐perpendicular residual velocities were detected prior to the megathrust earthquake of 26 December 2004. Earlier studies in Sumatra already showed this but underestimated the extent of the deformation zone, which reaches more than 600 km away from the trench. This study shows that only a regional Southeast Asia network spanning thousands of kilometers can provide a reference frame solid enough to analyze intraplate and interplate deformation in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.