A study was performed to compare matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS), linked to a recently engineered microbial identification database, and two rapid identification (ID) automated systems, BD Phoenix (Becton Dickinson Diagnostic Systems, France) and VITEK-2 (bioMérieux, Marcy L'Etoile, France), for the ID of coagulase-negative staphylococci (CoNS). Two hundred and thirty-four clinical isolates of CoNS representing 20 species were analyzed. All CoNS isolates were characterized by sodA gene sequencing, allowing interpretation of the ID results obtained using the respective database of each apparatus. Overall correct ID results were obtained in 93.2%, 75.6% and 75.2% of the cases with the MALDI-TOF-MS, Phoenix and VITEK-2 systems, respectively. Mis-ID and absence of results occurred in 1.7% and 5.1% of the cases with MALDI-TOF-MS, in 23.1% and 1.3% with the Phoenix, and in 13.7% and 0.9% with the VITEK-2 systems, respectively. In addition, with the latter automate, 10.3% of the IDs were proposed with remote possibility. When excluding the CoNS species not included in the databases of at least one of the three systems, the final percentage of correct results, Mis-ID and absence of ID were 97.4%, 1.3% and 1.3% with MALDI-TOF-MS, 79%, 21% and 0% with the Phoenix, and 78.6%, 10.3% and 0.9% with the VITEK-2 system, respectively. The present study demonstrates the robustness and high sensitivity of our microbial identification database used with MALDI-TOF-MS technology. This approach represents a powerful tool for the fast ID of clinical CoNS isolates.
Our results suggest that fluoroquinolones are a risk factor for MRSA acquisition. Control measures to limit MRSA spread in LTCFs should also be based on optimization of fluoroquinolone use.
The potential role of a patient's resident microbial flora in the risk of acquiring multiresistant bacteria (MRB) during hospitalization is unclear. We investigated this role by cross-sectional study of 103 patients at risk of acquisition of Staphylococcus aureus (SA), resistant (MRSA) or not (MSSA) to methicillin, recruited in four French hospitals. The flora was analysed by an exhaustive culture-based approach combined with molecular and/or mass-spectrometry-based identification, and SA strain typing. Forty-three of the 53 SA-negative patients at entry were followed for up to 52 weeks: 19 (44.2%) remained negative for SA and 24 (55.8%) became positive, including 19 (79%) who acquired an MSSA, four (17%) who acquired an MRSA and one who acquired both (4%). Fifty-one different species were identified among the 103 patients, of which two, Corynebacterium accolens and Staphylococcus haemolyticus (p = 0.02-0.01), were more prevalent in the absence of SA. However, the same number of patients carrying or not these two species acquired an MSSA/MRSA during follow-up, regardless of antibiotic treatment received. Clustering analysis showed that the microbial flora was highly specific to each patient, and not predictive for acquisition of MSSA/MRSA or not. Patient-specific microbial resident flora is not predictive of SA acquisition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.