The lysosomal aspartic protease cathepsin D (cath-D) is overexpressed and hyper-secreted by epithelial breast cancer cells. This protease is an independent marker of poor prognosis in breast cancer as it is correlated with the incidence of clinical metastasis. In normal cells, cath-D is localized in intracellular vesicles (lysosomes and endosomes). In cancer cells, overexpressed cath-D accumulates in cells, where it may affect their degradative capacities, and the pro-enzyme is hyper-secreted in the tumor micro-environment. In addition, during apoptosis, lysosomal cath-D is released into the cytosol, where it may interact with and/or cleave pro-apoptotic, anti-apoptotic, or nuclear proteins. Several studies have shown that cath-D affects various different steps in tumor progression and metastasis. Cath-D stimulates cancer cell growth in an autocrine manner, and also cath-D plays a crucial paracrine role in the tumor micro-environment by stimulating fibroblast outgrowth and tumor angiogenesis. A mutant D231N-cath-D, which is devoid of catalytic activity, remained mitogenic, indicating an additional action of cath-D by protein-protein interaction. Targeting cath-D in cancer may require the use of inhibitors of its catalytic activity, but also the development of new tools to inhibit its protein binding functions. Thus, elucidation of the mechanism of action of cath-D is crucial if an appropriate strategy is to be developed to target this protease in cancer. The discovery of new physiological substrates of cath-D using proteomic approaches can be expected to generate new critical targets. The aim of this review is to describe the roles of the cath-D protease in cancer progression and metastasis, as well as its function in apoptosis, and to discuss how it can be targeted in cancer by inhibiting its proteolytic activity and/or its binding protein activity.
Autophagy is regulated by posttranslational modifications, including acetylation. Here we show that HLA-B-associated transcript 3 (BAT3) is essential for basal and starvation-induced autophagy in embryonic day 18.5 BAT3 −/− mouse embryos and in mouse embryonic fibroblasts (MEFs) through the modulation of p300-dependent acetylation of p53 and ATG7. Specifically, BAT3 increases p53 acetylation and proautophagic p53 target gene expression, while limiting p300-dependent acetylation of ATG7, a mechanism known to inhibit autophagy. In the absence of BAT3 or when BAT3 is located exclusively in the cytosol, autophagy is abrogated, ATG7 is hyperacetylated, p53 acetylation is abolished, and p300 accumulates in the cytosol, indicating that BAT3 regulates the nuclear localization of p300. In addition, the interaction between BAT3 and p300 is stronger in the cytosol than in the nucleus and, during starvation, the level of p300 decreases in the cytosol but increases in the nucleus only in the presence of BAT3. We conclude that BAT3 tightly controls autophagy by modulating p300 intracellular localization, affecting the accessibility of p300 to its substrates, p53 and ATG7.degradation | signalisation | nucleo-cytoplasmic shuttling A utophagy allows the lysosomal degradation of intracellular macromolecules and organelles after their sequestration in a vacuole known as the autophagosome (1). Basal autophagy is a cytoplasmic quality control mechanism that limits the production of reactive oxygen species and genomic instability. Autophagy is also induced to improve cell survival under stress.Signaling pathways involved in the regulation of autophagy have been widely studied (2). Autophagy is modulated at two levels: (i) the molecular machinery involved in autophagosome biogenesis, dependent on specific genes known as Atg (AuTophaGy) genes, and (ii) the upstream signaling pathways (e.g., PI3K, MAPK, mTOR) that act on ATG proteins. Posttranslational modifications are crucial for the regulation of autophagy. The first example came from Y. Oshumi's laboratory with the discovery of the conjugation systems for the ATG5-ATG12 and ATG8-phosphatidylethanolamine complexes in yeast (3). Phosphorylation is probably the most thoroughly investigated posttranslational event in autophagy. It appears that modulation of acetylation also affects Atg gene expression or activity; for instance, acetylation of the Unc-51-like kinase 1 (ULK1) (mammalian homolog of ATG1) by the acetylase Tat interacting protein 60 kDa (TIP60) induces autophagy after growth factor deprivation (4). In yeast, ESA1-dependent acetylation of ATG3 is essential for its interaction with ATG8 and ATG8 lipidation (5). Conversely, acetylation of ATG5, ATG7, microtubule associated protein 1 light chain 3 (LC3), and ATG12 by the acetyltransferase p300 inhibits autophagy (6), whereas their deacetylation by Sirtuins 1 (SIRT1) stimulates autophagy (7).HLA-B-associated transcript 3 (BAT3) is a nucleo-cytoplasmic shuttling protein that contains, among other, a nuclear export signal (NES) and...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.