Mastoparan, and structurally-related amphipathic peptides, may induce cell death by augmentation of necrotic and/or apoptotic pathways. To more precisely delineate cytotoxic mechanisms, we determined that [Lys(5,8)Aib(10)]mastoparan (mitoparan) specifically induces apoptosis of U373MG and ECV304 cells, as demonstrated by endonuclease and caspase-3 activation and phosphatidylserine translocation. Live cell imaging confirmed that, following translocation of the plasma membrane, mitoparan specifically co-localizes with mitochondria. Complementary studies indicated that mitoparan induces swelling and permeabilization of isolated mitochondria, through cooperation with a protein of the permeability transition pore complex VDAC, leading to the release of the apoptogenic factor, cytochrome c. N-terminal acylation of mitoparan facilitated the synthesis of chimeric peptides that incorporated target-specific address motifs including an integrin-specific RGD sequence and a Fas ligand mimetic. Significantly, these sychnologically-organised peptides demonstrated further enhanced cytotoxic potencies. We conclude that the cell penetrant, mitochondriotoxic and apoptogenic properties of mitoparan, and its chimeric analogues, offer new insights to the study and therapeutic induction of apoptosis.
Mitochondria play a central role in the intrinsic pathway of apoptosis. In response to many pro-apoptotic stimuli, mitochondria undergo an irreversible process called mitochondrial membrane permeabilization (MMP). The detection of MMP in isolated mitochondria is most often based on assays that monitor either the loss of the inner transmembrane potential (DYm; classically with Rhodamine 123), permeability transition (PT, cyclosporin A-sensitive matrix swelling), or the release of critical pro-apoptotic intermembrane space effectors. To gain complementary information on MMP mechanisms, we have systematically used three additional assays optimized for the 96-well microplate format: (1) inner membrane permeability, (2) VDAC-associated NADH reductase activity, and (3) ATP/ADP translocase activity. We report that ad hoc combinations of ANT and VDAC ligands, carbonyl cyanide m-chlorophenylhydrazone (CCCP), mastoparan and Vpr52-96 peptide and PT inhibitors, permit to explore relationships between enzymatic functions of sessile mitochondrial proteins (i.e. ANT, VDAC) and MMP. These assays should be useful tools to investigate mitochondrial apoptosis, decipher the implication of inner and outer membrane permeabilization and provide a multi-parametric approach for drug discovery.
Tumor blood vessels are an important emerging target for anticancer therapy. Here, we characterize the in vitro antiproliferative and antiangiogenic properties of the synthetic small molecule, 7-ethoxy-4-(3,4,5-trimethoxybenzyl)isoquinolin-8-amine dihydrochloride, EHT 6706, a novel microtubule-disrupting agent that targets the colchicine-binding site to inhibit tubulin polymerization. At low nM concentrations, EHT 6706 exhibits highly potent antiproliferative activity on more than 60 human tumor cell lines, even those described as being drug resistant. EHT 6706 also shows strong efficacy as a vascular-disrupting agent, since it prevents endothelial cell tube formation and disrupts pre-established vessels, changes the permeability of endothelial cell monolayers and inhibits endothelial cell migration. Genome-wide transcriptomic analysis of EHT 6706 effects on human endothelial cells shows that the antiangiogenic activity elicits gene deregulations of antiangiogenic pathways. These findings indicate that EHT 6706 is a promising tubulin-binding compound with potentially broad clinical antitumor efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.