Insect outbreaks are major drivers of natural disturbances in forest ecosystems. Outbreaks can have both direct and indirect effects on the composition of soil arthropod communities through canopy opening, nutrient addition and predator-prey interactions. In this study, we aimed to understand the effects of forest tent caterpillar (Malacosoma disstria; FTC) outbreaks through cascading effects on ant communities in both temperate and boreal forests in Canada. Pitfall traps and Berlese funnels were used to compare the ant communities, as well as the surrounding arthropod communities, between control and outbreak sites in boreal and temperate forests (in Quebec, Canada). Using the Sørensen dissimilarity index, we determined the alpha and beta diversity of the ant community. Other arthropods collected in the traps were counted to evaluate the richness and abundance of potential prey for the ants and other potential predators of the FTC. We used an indicator species analysis to examine the species associated with sites defoliated by the outbreak. In the boreal forest, we found that FTC outbreaks caused decreases in species richness and increases in the evenness of ant communities in defoliated sites. In the boreal forest sites, species composition varied significantly between control and outbreak sites. This pattern was driven in part by the presence of other predators. A similar, but weaker pattern was observed in the temperate forest. We saw no changes in the beta diversity in the boreal forest, but did see a significant decrease in the temperate forest between the outbreak sites and the control sites. Ant species in the boreal forest tended to exhibit a more marked preference for either control or previously defoliated sites than species in the temperate forest. Our study showed that disturbances such as insect outbreaks can drive changes in the ant community. While we saw small effects of outbreaks, manipulation experiments using resource addition could help us validate the mechanisms behind these relationships.
Eruptive population dynamics imply dramatic changes in mortality rates between growth and decline phases of outbreaks. Large fluctuations in population density are associated with r-selection and type III survival curves (Watt, 1960;Fowler, 1981;Emlen, 1984): when high numbers of eggs are laid, but survival in early instars is low, density dependence in larval mortality can generate eruptive dynamics. Indeed, density dependence of top-down mortality through predation, parasitism, and disease likely plays a large role in driving population dynamics of many outbreaking forest lepidopterans (
Insect outbreaks are major drivers of natural disturbances in forest ecosystems. Outbreaks can have both direct and indirect effects on the composition of soil arthropod communities, through canopy opening, nutrient addition and predator-prey interactions. In this study, we aim to understand the effects of forest tent caterpillar (Malacosoma disstria; FTC) outbreaks on ant communities in both temperate and boreal forests in Canada. Using pitfall traps and Berlese funnels, we compared the ant communities as well as the surrounding arthropod communities between control and outbreak sites in boreal andboreal and temperate forests (in Québec, Canada). Using the Sørensen dissimilarity index, we determined the alpha and beta diversity of the ant community. Other arthropods collected in the traps were counted to evaluate the richness and abundance of potential prey for the ants and other potential predators of the FTC. We used an indicator species analysis to examine the species associated with sites defoliated by the outbreak. In the boreal forest, we found that FTC outbreaks caused decreases in species richness and increases in the evenness of ant communities in defoliated sites. In the boreal forest sites, species composition varied significantly between control and outbreak sites. This pattern was driven by the presence of other predators. We also saw no changes in beta diversity in the boreal forest but did see a significant decrease in the temperate forest between the outbreak sites and the control sites. A similar, but weaker pattern was observed in the temperate forest. Ant species in the boreal forest tended to exhibit a more marked preference for either control or previously defoliated sites than species in the temperate forest. Our study showed that disturbances like insect outbreaks can drive changes in the ant community. While we saw small effects of outbreaks, manipulation experiments using resource addition could help us validate the mechanisms behind these relationships.
Outbreaks of defoliator insects are important natural disturbances in boreal forests, but their increasing frequency under warming climate conditions is of concern. Outbreak events can shape ecosystem dynamics with cascading effects through trophic networks. Caterpillar defoliation can alter tree physiology, increase sunlight to the understory, and result in the deposition of large amounts of leaf litter and caterpillar frass to the forest floor. These modifications can thus affect soil organisms through direct (e.g., changes in soil temperature or moisture) or indirect (e.g., changes in detrital and root food webs) mechanisms. We assessed whether a recent (2015 to 2017) outbreak of the forest tent caterpillar (Malacosoma disstria) at the Lake Duparquet Teaching and Research Forest (Abitibi, QC, Canada) affected soil springtail communities, abundant microarthropods in forest soils. In 2018 and 2019, we sampled litter and soil (0–10 cm depth) at eight sites each in aspen-dominated (Populus tremuloides Michx) stands that were undefoliated or had a recent defoliation history. We found no significant difference in springtail abundance (specimens cm−2) or alpha diversity indices between undefoliated sites and those with defoliation history. However, we observed a transient change in springtail community composition 1 year after the outbreak (2018) with the absence of Folsomia nivalis, Anurophorus sp1, and Xenylla christianseni in sites with defoliation history, but no compositional differences were observed in 2019. Certain soil nutrients (P, C, Mg, Mn) were significant predictors of springtail community composition, but soil microbial biomass was not, despite its significant decrease in sites with defoliation history. Our results show that soil springtail communities respond in the short-term to the forest tent caterpillar outbreak with compositional shifts, but seem ultimately resilient to these events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.