The human phase 2B RV144 ALVAC-HIV vCP1521/AIDSVAX B/E vaccine trial, held in Thailand, resulted in an estimated 31.2% efficacy against HIV infection. By contrast, vaccination with VAX003 (consisting of only AIDSVAX B/E) was not protective. Because protection within RV144 was observed in the absence of neutralizing antibody activity or cytotoxic T cell responses, we speculated that the specificity or qualitative differences in Fc-effector profiles of nonneutralizing antibodies may have accounted for the efficacy differences observed between the two trials. We show that the RV144 regimen elicited nonneutralizing antibodies with highly coordinated Fc-mediated effector responses through the selective induction of highly functional immunoglobulin G3 (IgG3). By contrast, VAX003 elicited monofunctional antibody responses influenced by IgG4 selection, which was promoted by repeated AIDSVAX B/E protein boosts. Moreover, only RV144 induced IgG1 and IgG3 antibodies targeting the crown of the HIV envelope V2 loop, albeit with limited coverage of breakthrough viral sequences. These data suggest that subclass selection differences associated with coordinated humoral functional responses targeting strain-specific protective V2 loop epitopes may underlie differences in vaccine efficacy observed between these two vaccine trials.
Phagocytosis can be induced via the engagement of Fcγ receptors by antibody-opsonized material. Furthermore, the efficiency of antibody-induced effector functions has been shown to be dramatically modulated by changes in antibody glycosylation. Because infection can modulate antibody glycans, which in turn modulate antibody functions, assays capable of determining the induction of effector functions rather than neutralization or titer provide a valuable opportunity to more fully characterize the quality of the adaptive immune response. Here we describe a robust and high-throughput flow cytometric assay to define the phagocytic activity of antigen-specific antibodies from clinical samples. This assay employs a monocytic cell line that expresses numerous Fc receptors: including inhibitory and activating, and high and low affinity receptorsallowing complex phenotypes to be studied. We demonstrate the adaptability of this highthroughput, flow-based assay to measure antigen-specific antibody-mediated phagocytosis against an array of viruses, including influenza, HIV, and dengue. The phagocytosis assay format further allows for simultaneous analysis of cytokine release, as well as determination of the role of specific Fcγ-receptor subtypes, making it a highly useful system for parsing differences in the ability of clinical and vaccine induced antibody samples to recruit this critical effector function.
SUMMARY The global diversity of HIV-1 represents a critical challenge facing HIV-1 vaccine development. HIV-1 mosaic antigens are bioinformatically optimized immunogens designed for improved coverage of HIV-1 diversity. However, the protective efficacy of global HIV-1 vaccine antigens has not previously been evaluated. Here we demonstrate the capacity of bivalent HIV-1 mosaic antigens to protect rhesus monkeys against acquisition of heterologous challenges with the difficult-to-neutralize simian-human immunodeficiency virus SHIV-SF162P3. Adenovirus/poxvirus and adenovirus/adenovirus vector-based vaccines expressing HIV-1 mosaic Env, Gag, and Pol afforded a significant reduction in the per-exposure acquisition risk following repetitive, intrarectal SHIV-SF162P3 challenges. Protection against acquisition of infection was correlated with vaccine-elicited binding, neutralizing, and functional non-neutralizing antibodies. These data demonstrate the protective efficacy of HIV-1 mosaic antigens and suggest a potential strategy towards the development of a global HIV-1 vaccine. Moreover, our findings suggest that the coordinated activity of multiple antibody functions may contribute to protection against difficult-to-neutralize viruses.
The immune tolerance to rat kidney allografts induced by a perioperative treatment with anti-CD28 Abs is associated with a severe unresponsiveness of peripheral blood cells to donor Ags. In this model, we identified an accumulation in the blood of CD3−class II−CD11b+CD80/86+ plastic-adherent cells that additionally expressed CD172a as well as other myeloid markers. These cells were able to inhibit proliferation, but not activation, of effector T cells and to induce apoptosis in a contact-dependent manner. Their suppressive action was found to be under the control of inducible NO synthase, an enzyme also up-regulated in tolerated allografts. Based on these features, these cells can be defined as myeloid-derived suppressor cells (MDSC). Interestingly, CD4+CD25highFoxP3+ regulatory T cells were insensitive in vitro to MDSC-mediated suppression. Although the adoptive transfer of MDSC failed to induce kidney allograft tolerance in recently transplanted recipients, the maintenance of tolerance after administration of anti-CD28 Abs was found to be dependent on the action of inducible NO synthase. These results suggest that increased numbers of MDSC can inhibit alloreactive T cell proliferation in vivo and that these cells may participate in the NO-dependent maintenance phase of tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.