In the endeavor to understand how our brains enable our multifaceted memories, much controversy surrounds the contributions of the hippocampus and perirhinal cortex (PrC). Here we recorded functional magnetic resonance imaging (fMRI) in healthy controls and intracranial Electroencephalography (EEG) in patients during the same recognition memory paradigm. Although conventional fMRI analysis showed indistinguishable roles of the hippocampus and PrC in familiarity-based item recognition and recollection-based source retrieval, event-related fMRI and EEG time-courses revealed a clear temporal dissociation of memory signals within and across these regions. Whereas an early source retrieval effect was followed by a late, post-decision item novelty effect in hippocampus, an early item novelty effect was followed by a sustained source retrieval effect in PrC. Although factors like memory strength were not experimentally controlled, the temporal pattern across regions suggests that a rapid item recognition signal in PrC triggers a source retrieval process in the hippocampus, which in turn recruits PrC representations/mechanisms – evidenced here by increased hippocampal-PrC coupling during source recognition.
Which neural processes underlie our conscious experience? One theoretical view argues that the neural correlates of consciousness (NCC) reside in local activity in sensory cortices. Accordingly, local category-specific gamma band responses in visual cortex correlate with conscious perception. However, as most studies manipulated conscious perception by altering the amount of sensory evidence, it is possible that they reflect prerequisites or consequences of consciousness rather than the actual NCC. Here we directly address this issue by developing a new experimental paradigm in which conscious perception is modulated either by sensory evidence or by previous exposure of the images while recording intracranial EEG from the higher-order visual cortex of human epilepsy patients. A clear prediction is that neural processes directly reflecting conscious perception should be present regardless of how it comes about. In contrast, we observed that although subjective reports were modulated both by sensory evidence and by previous exposure, gamma band responses solely reflected sensory evidence. This result contradicts the proposal that local gamma band responses in the higher-order visual cortex reflect conscious perception.
BackgroundThe psychodynamic theory of repression suggests that experiences which are related to internal conflicts become unconscious. Previous attempts to investigate repression experimentally were based on voluntary, intentional suppression of stimulus material. Unconscious repression of conflict-related material is arguably due to different processes, but has never been studied with neuroimaging methods.MethodsWe used functional magnetic resonance imaging (fMRI) in addition with skin conductance recordings during two free association paradigms to identify the neural mechanisms underlying forgetting of freely associated words according to repression theory.ResultsIn the first experiment, free association to subsequently forgotten words was accompanied by increases in skin conductance responses (SCRs) and reaction times (RTs), indicating autonomic arousal, and by activation of the anterior cingulate cortex. These findings are consistent with the hypothesis that these associations were repressed because they elicited internal conflicts. To test this idea more directly, we conducted a second experiment in which participants freely associated to conflict-related sentences. Indeed, these associations were more likely to be forgotten than associations to not conflict-related sentences and were accompanied by increases in SCRs and RTs. Furthermore, we observed enhanced activation of the anterior cingulate cortex and deactivation of hippocampus and parahippocampal cortex during association to conflict-related sentences.ConclusionsThese two experiments demonstrate that high autonomic arousal during free association predicts subsequent memory failure, accompanied by increased activation of conflict-related and deactivation of memory-related brain regions. These results are consistent with the hypothesis that during repression, explicit memory systems are down-regulated by the anterior cingulate cortex.
Memory performance in everyday life is often far from perfect and therefore needs to be monitored and controlled by metamemory evaluations, such as judgments of learning (JOLs). JOLs support monitoring for goal-directed modification of learning. Behavioral studies suggested retrieval processes as providing a basis for JOLs. Previous functional imaging research on JOLs found a dissociation between processes underlying memory prediction, located in the medial prefrontal cortex (mPFC), and actual encoding success, located in the medial temporal lobe. However, JOL-specific neural correlates could not be identified unequivocally, since JOLs were given simultaneously with encoding. Here, we aimed to identify the neurocognitive basis of JOLs, i.e., the cognitive processes and neural correlates of JOL, separate from initial encoding. Using functional magnetic resonance imaging (fMRI), we implemented a face-name paired associative design. In general, we found that actual memory success was associated with increased brain activation of the hippocampi bilaterally, whereas predicted memory success was accompanied by increased activation in mPFC, orbital frontal and anterior cingulate cortices. Masking brain activation during predicted memory success with activation during retrieval success revealed BOLD increases of the mPFC. Our findings indicate that JOLs actually incorporate retrieval processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.