Hydrogen abstraction reactions [Formula: see text] with R, X≡H, CH3, NH2,OH, and F have been studied at the abinitio 6-31G – UHF level. However, energetic properties were computed at the CI level. Rate constants and Arrhenius parameters have been obtained using the transition state theory formalism with Eckart's tunneling correction. The discrepancy between theoretical and experimental results led us to elaborate a semi-empirical procedure to calculate activation barriers, in which the bonds R—H and X—H are represented by Morse curves. Thus, the agreement between theory and experiment is much better. Moreover, the results obtained by this procedure demonstrate the non-Arrhenius behavior of all the reactions under consideration and allow us to rationalize a large number of experimental facts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.