Fighting bacterial resistance is one of the concerns in modern days, as antibiotics remain the main resource of bacterial control. Data shows that for every antibiotic developed, there is a microorganism that becomes resistant to it. Natural polymers, as the source of antibacterial agents, offer a new way to fight bacterial infection. The advantage over conventional synthetic antibiotics is that natural antimicrobial agents are biocompatible, non-toxic, and inexpensive. Chitosan is one of the natural polymers that represent a very promising source for the development of antimicrobial agents. In addition, chitosan is biodegradable, non-toxic, and most importantly, promotes wound healing, features that makes it suitable as a starting material for wound dressings. This paper reviews the antimicrobial properties of chitosan and describes the mechanisms of action toward microbial cells as well as the interactions with mammalian cells in terms of wound healing process. Finally, the applications of chitosan as a wound-dressing material are discussed along with the current status of chitosan-based wound dressings existing on the market.
eThe uncontrolled, often inappropriate use of antibiotics has resulted in the increasing prevalence of antibiotic-resistant pathogens, with major cost implications for both United States and European health care systems. We describe the utilization of a lowmolecular-weight oligosaccharide nanomedicine (OligoG), based on the biopolymer alginate, which is able to perturb multidrug-resistant (MDR) bacteria by modulating biofilm formation and persistence and reducing resistance to antibiotic treatment, as evident using conventional and robotic MIC screening and microscopic analyses of biofilm structure. OligoG increased (up to 512-fold) the efficacy of conventional antibiotics against important MDR pathogens, including Pseudomonas, Acinetobacter, and Burkholderia spp., appearing to be effective with several classes of antibiotic (i.e., macrolides, -lactams, and tetracyclines). Using confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM), increasing concentrations (2%, 6%, and 10%) of alginate oligomer were shown to have a direct effect on the quality of the biofilms produced and on the health of the cells within that biofilm. Biofilm growth was visibly weakened in the presence of 10% OligoG, as seen by decreased biomass and increased intercellular spaces, with the bacterial cells themselves becoming distorted and uneven due to apparently damaged cell membranes. This report demonstrates the feasibility of reducing the tolerance of wound biofilms to antibiotics with the use of specific alginate preparations.
Distribution and proportion of β-D-mannuronic and α-L-guluronic acid in alginates are important for understanding the chemical-physical properties of the polymer. The present state of art methods, which is based on NMR, provides a statistical description of alginates. In this work, a method was developed that also gives information of the distribution of block lengths of each of the three block types (M, G, and MG blocks). This was achieved using a combination of alginate lyases with different substrate specificities, including a novel lyase that specifically cleaves diguluronic acid linkages. Reaction products and isolated fragments of alginates degraded with these lyases were subsequently analyzed with (1)H NMR, HPAEC-PAD, and SEC-MALLS. The method was applied on three seaweed alginates with large differences in sequence parameters (F(G) = 0.32 to 0.67). All samples contained considerable amounts of extremely long G blocks (DP > 100). The finding of long M blocks (DP ≥ 90) suggests that also algal epimerases act by a multiple attack mechanism. Alternating sequences (MG-blocks) were found to be much shorter than the other block types. In connection with method development, an oligomer library comprising both saturated and unsaturated oligomers of various composition and DP 2-15 was made.
Genetic optimizations to achieve high-level production of three different proteins of medical importance for humans, granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon alpha 2b (IFN-␣2b), and single-chain antibody variable fragment (scFv-phOx), were investigated during high-cell-density cultivations of Escherichia coli. All three proteins were poorly expressed when put under control of the strong Pm/xylS promoter/regulator system, but high volumetric yields of GM-CSF and scFv-phOx (up to 1.7 and 2.3 g/liter, respectively) were achieved when the respective genes were fused to a translocation signal sequence. The choice of signal sequence, pelB, ompA, or synthetic signal sequence CSP, displayed a high and specific impact on the total expression levels for these two proteins. Data obtained by quantitative PCR confirmed relatively high in vivo transcript levels without using a fused signal sequence, suggesting that the signal sequences mainly stimulate translation. IFN-␣2b expression remained poor even when fused to a signal sequence, and an alternative IFN-␣2b coding sequence that was optimized for effective expression in Escherichia coli was therefore synthesized. The total expression level of this optimized gene remained low, while high-level production (0.6 g/liter) was achieved when the gene was fused to a signal sequence. Together, our results demonstrate a critical role of signal sequences for achieving industrial level expression of three human proteins in E. coli under the conditions tested, and this effect has to our knowledge not previously been systematically investigated.
Anhydrobiotic engineering aims to increase the level of desiccation tolerance in sensitive organisms to that observed in true anhydrobiotes. In addition to a suitable extracellular drying excipient, a key factor for anhydrobiotic engineering of gram-negative enterobacteria seems to be the generation of high intracellular concentrations of the nonreducing disaccharide trehalose, which can be achieved by osmotic induction. In the soil bacterium Pseudomonas putida KT2440, however, only limited amounts of trehalose are naturally accumulated in defined high-osmolarity medium, correlating with relatively poor survival of desiccated cultures. Based on the enterobacterial model, it was proposed that increasing intracellular trehalose concentration in P. putida KT2440 should improve survival. Using genetic engineering techniques, intracellular trehalose concentrations were obtained which were similar to or greater than those in enterobacteria, but this did not translate into improved desiccation tolerance. Therefore, at least for some populations of microorganisms, trehalose does not appear to provide full protection against desiccation damage, even when present at high concentrations both inside and outside the cell. For P. putida KT2440, it was shown that this was not due to a natural limit in desiccation tolerance since successful anhydrobiotic engineering was achieved by use of a different drying excipient, hydroxyectoine, with osmotically preconditioned bacteria for which 40 to 60% viability was maintained over extended periods (up to 42 days) in the dry state. Hydroxyectoine therefore has considerable potential for the improvement of desiccation tolerance in sensitive microorganisms, particularly for those recalcitrant to trehalose.Disaccharides and other polyols have been shown to be highly effective stabilizers of dried biological molecules and membranes in vitro, and the protection conferred by trehalose, in particular, has attracted considerable attention (7, 9, 10). Trehalose is also thought to be crucial for the survival of many anhydrobiotic organisms, which are able to maintain viability throughout long periods in a dried state (reviewed in reference 8). It is therefore reasonable to suppose that trehalose (or related molecules, such as sucrose) could be used to improve the desiccation tolerance of otherwise sensitive organisms, and several groups have demonstrated this for microorganisms (2,17,21,23,37).However, the stability of the dried bacteria in these experiments falls far short of that observed in anhydrobiotic organisms. For example, Louis et al. (23) showed that Escherichia coli loses between 1 and 4 logs of viability 6 weeks after being dried in 0.5 M trehalose and stored at 4°C. Welsh and Herbert (37) reported maximal survival rates of 4.2 and 6.5% of initial CFU after 50 days at ambient temperature when E. coli was dried in the presence of 0.25 M extracellular trehalose or with a similar concentration of intracellular trehalose, respectively. Billi et al. (2) genetically engineered E. coli to pr...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.