In this article we review some new evidence relating to early visual processing and propose an explanatory framework. A series of search experiments tested detection of targets distinguished from the distractors by differences on a single dimension. Our aim was to use the pattern of search latencies to infer which features are coded automatically in early vision. For each of 12 different dimensions, one or more pairs of contrasting stimuli were tested. Each member of a pair played the role of target in one condition and the role of distractor in the other condition. Many pairs gave rise to a marked asymmetry in search latencies, such that one stimulus in the pair was detected either through parallel processing or with small increases in latency as display size increased, whereas the other gave search functions that increased much more steeply. Targets denned by larger values on the quantitative dimensions of length, number, and contrast, by line curvature, by misaligned orientation, and by values that deviated from a standard or prototypical color or shape were detected easily, whereas targets defined by smaller values on the quantitative dimensions, by straightness, by frame-aligned orientation, and by prototypical colors or shapes required slow and apparently serial search. These values appear to be coded by default, as the absence of the contrasting values. We found no feature of line arrangements that allowed automatic, preattentive detection; nor did connectedness or containment-the two examples of topological features that we tested. We interpret the results as evidence that focused attention to single items or to groups is required to reduce background activity when the Weber fraction distinguishing the pooled feature activity with displays containing a target and with displays containing only distractors is too small to allow reliable discrimination. Vision provides an organized representation of the world around us, including objects and organisms located or moving on a structured ground. Much of what we see is recognized and labeled, but this is not essential to vision. Unless basic cues (e.g., to solidity) are completely misleading, people can maneuver successfully in an unfamiliar environment. They can reach for, grasp, and manipulate objects never previously encountered. Marr (1982) distinguished the goal of early vision-to form a description of the three-dimensional surfaces around us-from that of later vision-to identify or recognize objects and their settings. Most theorists agree that the early description derives from spatial groupings of a small set of simple primitives that are registered in parallel across the visual field. These primitives, or functional features, need not correspond to simple physical dimensions like wavelength or intensity. On the contrary, their function should be to provide an "alphabet soup of descriptive chunks that are almost certain to have some fairly direct semantic interpretation" (Witkin & Tenenbaum, 1983, p.
The integration of complex information in working memory, and its effect on capacity, shape the limits of conscious cognition. The literature conflicts on whether short-term visual memory represents information as integrated objects. A change-detection paradigm using objects defined by color with location or shape was used to investigate binding in short-term visual memory. Results showed that features from the same dimension compete for capacity, whereas features from different dimensions can be stored in parallel. Binding between these features can occur, but focused attention is required to create and maintain the binding over time, and this integrated format is vulnerable to interference. In the proposed model, working memory capacity is limited both by the independent capacity of simple feature stores and by demands on attention networks that integrate this distributed information into complex but unified thought objects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.