The central role of the hypothalamus in the origination and͞or processing of feeding-related stimuli may be modulated by the activity of other functional areas of the brain including the insular cortex (involved in enteroceptive monitoring) and the prefrontal cortex (involved in the inhibition of inappropriate response tendencies). Regional cerebral blood f low (rCBF), a marker of neuronal activity, was measured in 11 healthy, normal-weight men by using positron emission tomography in a state of hunger (after 36-h fast) and a state of satiation (after a liquid meal). Hunger was associated with significantly increased rCBF in the vicinity of the hypothalamus and insular cortex and in additional paralimbic and limbic areas (orbitofrontal cortex, anterior cingulate cortex, and parahippocampal and hippocampal formation), thalamus, caudate, precuneus, putamen, and cerebellum. Satiation was associated with increased rCBF in the vicinity of the ventromedial prefrontal cortex, dorsolateral prefrontal cortex, and inferior parietal lobule. Changes in plasma insulin concentrations in response to the meal were negatively correlated with changes in rCBF in the insular and orbitofrontal cortex. Changes in plasma free fatty acid concentrations in response to the meal were negatively correlated with changes in rCBF in the anterior cingulate and positively correlated with changes in rCBF in the dorsolateral prefrontal cortex. In conclusion, these findings raise the possibility that several regions of the brain participate in the regulation of hunger and satiation and that insulin and free fatty acids may be metabolic modulators of postprandial brain neuronal events. Although exploratory, the present study provides a foundation for investigating the human brain regions and cognitive operations that respond to nutritional stimuli.
An object's global, three-dimensional structure may be represented by a specialized brain system involving regions of inferior temporal cortex. This system's role in object representation can be understood by experiments in which people study drawings of novel objects with possible or impossible three-dimensional structures, and later make either possible/impossible object decisions or old/new recognition decisions about briefly flashed studied and non-studied objects. Although object decisions about possible objects are facilitated by prior study, there is no corresponding facilitation for impossible objects, thereby implicating a system that is specifically involved in the representation of structurally coherent visual objects. Here we show, by positron emission tomography (PET), that increases in blood flow in inferior temporal regions are associated with object decisions about possible but not impossible objects, and that there are increases in the vicinity of the hippocampal formation associated with episodic recognition of possible objects.
Brain imaging techniques have the potential to characterize neurobiological changes that precede the onset of cognitive impairment in persons at risk for Alzheimer's disease. As previously described, positron emission tomography (PET) was used to compare 11 cognitively normal persons 50 to 62 years of age who were homozygous for the epsilon4 allele of apolipoprotein E and 22 persons without the epsilon4 allele with a reported family history of Alzheimer's dementia who were matched for sex, age, and level of education. The epsilon4 homozygotes had significantly reduced glucose metabolism in the same brain regions as patients with Alzheimer's dementia; the largest reduction was in the posterior cingulate cortex. As described here, magnetic resonance imaging (MRI) was used to compare hippocampal volumes in the same subject groups. The epsilon4 homozygotes showed nonsignificant trends for smaller left and right hippocampal volumes; overall, smaller hippocampal volumes were associated with reduced performance on a long-term memory test. Whereas PET measurements of cerebral glucose metabolism begin to decrease before the onset of memory decline, MRI measurements of hippocampal volume begin to decrease in conjunction with memory decline in cognitively normal persons at risk for Alzheimer's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.