The literature on time series of functional data has focused on processes of which the probabilistic law is either constant over time or constant up to its second-order structure. Especially for long stretches of data it is desirable to be able to weaken this assumption. This paper introduces a framework that will enable meaningful statistical inference of functional data of which the dynamics change over time. We put forward the concept of local stationarity in the functional setting and establish a class of processes that have a functional time-varying spectral representation. Subsequently, we derive conditions that allow for fundamental results from nonstationary multivariate time series to carry over to the function space. In particular, time-varying functional ARMA processes are investigated and shown to be functional locally stationary according to the proposed definition. As a side-result, we establish a Cramér representation for an important class of weakly stationary functional processes. Important in our context is the notion of a time-varying spectral density operator of which the properties are studied and uniqueness is derived. Finally, we provide a consistent nonparametric estimator of this operator and show it is asymptotically Gaussian using a weaker tightness criterion than what is usually deemed necessary.
We propose a new measure for stationarity of a functional time series, which is based on an explicit representation of the L 2 -distance between the spectral density operator of a non-stationary process and its best (L 2 -)approximation by a spectral density operator corresponding to a stationary process. This distance can easily be estimated by sums of Hilbert-Schmidt inner products of periodogram operators (evaluated at different frequencies), and asymptotic normality of an appropriately standardized version of the estimator can be established for the corresponding estimate under the null hypothesis and alternative. As a result we obtain a simple asymptotic frequency domain level α test (using the quantiles of the normal distribution) for the hypothesis of stationarity of functional time series. Other applications such as asymptotic confidence intervals for a measure of stationarity or the construction of tests for "relevant deviations from stationarity", are also briefly mentioned. We demonstrate in a small simulation study that the new method has very good finite sample properties. Moreover, we apply our test to annual temperature curves.
Due to the surge of data storage techniques, the need for the development of appropriate techniques to identify patterns and to extract knowledge from the resulting enormous data sets, which can be viewed as collections of dependent functional data, is of increasing interest in many scientific areas. We develop a similarity measure for spectral density operators of a collection of functional time series, which is based on the aggregation of Hilbert-Schmidt differences of the individual time-varying spectral density operators. Under fairly general conditions, the asymptotic properties of the corresponding estimator are derived and asymptotic normality is established. The introduced statistic lends itself naturally to quantify (dis)-similarity between functional time series, which we subsequently exploit in order to build a spectral clustering algorithm. Our algorithm is the first of its kind in the analysis of non-stationary (functional) time series and enables to discover particular patterns by grouping together 'similar' series into clusters, thereby reducing the complexity of the analysis considerably. The algorithm is simple to implement and computationally feasible. As a further application we provide a simple test for the hypothesis that the second order properties of two non-stationary functional time series coincide.
In this article, we prove Herglotz's theorem for Hilbert-valued time series. This requires the notion of an operator-valued measure, which we shall make precise for our setting. Herglotz's theorem for functional time series allows to generalize existing results that are central to frequency domain analysis on the function space. In particular, we use this result to prove the existence of a functional Cramér representation of a large class of processes, including those with jumps in the spectral distribution and long-memory processes. We furthermore obtain an optimal finite dimensional reduction of the time series under weaker assumptions than available in the literature. The results of this paper therefore enable Fourier analysis for processes of which the spectral density operator does not necessarily exist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.