The prominence of autophagic neuronal death in the ischemic penumbra and the neuroprotective efficacy of postischemic autophagy inhibition indicate that autophagy should be a primary target in the treatment of neonatal cerebral ischemia.
NMDA receptors (NMDARs) mediate ischemic brain damage, for which interactions between the C termini of NR2 subunits and PDZ domain proteins within the NMDAR signaling complex (NSC) are emerging therapeutic targets. However, expression of NMDARs in a non-neuronal context, lacking many NSC components, can still induce cell death. Moreover, it is unclear whether targeting the NSC will impair NMDAR-dependent prosurvival and plasticity signaling. We show that the NMDAR can promote death signaling independently of the NR2 PDZ ligand, when expressed in non-neuronal cells lacking PSD-95 and neuronal nitric oxide synthase (nNOS), key PDZ proteins that mediate neuronal NMDAR excitotoxicity. However, in a non-neuronal context, the NMDAR promotes cell death solely via c-Jun N-terminal protein kinase (JNK), whereas NMDAR-dependent cortical neuronal death is promoted by both JNK and p38. NMDARdependent pro-death signaling via p38 relies on neuronal context, although death signaling by JNK, triggered by mitochondrial reactive oxygen species production, does not. NMDAR-dependent p38 activation in neurons is triggered by submembranous Ca 2ϩ , and is disrupted by NOS inhibitors and also a peptide mimicking the NR2B PDZ ligand (TAT-NR2B9c). TAT-NR2B9c reduced excitotoxic neuronal death and p38-mediated ischemic damage, without impairing an NMDAR-dependent plasticity model or prosurvival signaling to CREB or Akt. TAT-NR2B9c did not inhibit JNK activation, and synergized with JNK inhibitors to ameliorate severe excitotoxic neuronal loss in vitro and ischemic cortical damage in vivo. Thus, NMDAR-activated signals comprise pro-death pathways with differing requirements for PDZ protein interactions. These signals are amenable to selective inhibition, while sparing synaptic plasticity and prosurvival signaling.
Activation of poly(ADP-ribose) polymerase (PARP) is an important factor in the pathogenesis of various cardiovascular and inflammatory diseases. Here, we report that the gender-specific inflammatory response is preferentially down-regulated by PARP in male animals. Female mice produce less tumor necrosis factor-␣ and macrophage inflammatory protein-1␣ in response to systemic inflammation induced by endotoxin than male mice and are resistant to endotoxin-induced mortality. Pharmacological inhibition of PARP is effective in reducing inflammatory mediator production and mortality in male, but not in female, mice. Ovariectomy partially reverses the protection seen in female mice. Endotoxin-induced PARP activation in circulating leukocytes is reduced in male, but not female, animals by pharmacological PARP inhibition, as shown by flow cytometry. Pretreatment of male mice with 17--estradiol prevents endotoxin-induced hepatic injury and reduces poly(ADPribosyl)ation in vivo. In male, but not female, animals, endotoxin induces an impairment of the endothelium-dependent relaxant responses, which is prevented by PARP inhibition. In vitro oxidant-induced PARP activation is reduced in cultured cells placed in female rat serum compared with male serum. Estrogen does not directly inhibit the enzymatic activity of PARP in vitro. However, PARP and estrogen receptor ␣ form a complex, which binds to DNA in vitro, and the DNA binding of this complex is enhanced by estrogen. Thus, estrogen may anchor PARP to estrogen receptor ␣ and to the DNA and prevent its recognition of DNA strand breaks and hence its activation. In conclusion, the gender difference in the inflammatory response shows preferential modulation by PARP in male animals.
Increased production of reactive oxygen and nitrogen species has recently been implicated in the pathogenesis of cardiac and endothelial dysfunction associated with atherosclerosis, hypertension, and aging. Oxidant-induced cell injury triggers the activation of nuclear enzyme poly(ADP-ribose) polymerase (PARP), which in turn contributes to cardiac and vascular dysfunction in various pathophysiological conditions including diabetes, reperfusion injury, circulatory shock, and aging. Here, we investigated the effect of a new PARP inhibitor, INO-1001, on cardiac and endothelial dysfunction associated with advanced aging using Millar's new Aria pressure-volume conductance system and isolated aortic rings. Young adult (3 months old) and aging (24 months old) Fischer rats were treated for 2 months with vehicle, or the potent PARP inhibitor INO-1001. In the vehicle-treated aging animals, there was a marked reduction of both systolic and diastolic cardiac function and loss of endothelial relaxant responsiveness of aortic rings to acetylcholine. Treatment with INO-1001 improved cardiac performance in aging animals and also acetylcholine-induced, nitric oxide-mediated vascular relaxation. Thus, pharmacological inhibition of PARP may represent a novel approach to improve cardiac and vascular dysfunction associated with aging.Poly(ADP-ribose) polymerase (PARP) is the most abundant nuclear enzyme of eukaryotic cells. When activated by DNA single-strand breaks, PARP initiates an energy-consuming cycle by transferring ADP ribose units from NAD ϩ to nuclear proteins. This process results in rapid depletion of the intracellular NAD ϩ and ATP pools, slowing the rate of glycolysis and mitochondrial respiration, eventually leading to cellular dysfunction and death (reviewed in Virá g and Szabó 2002). PARP can also regulate the expression of various inflammatory mediators such as inducible nitric-oxide synthase, tumor necrosis factor-␣, and intracellular adhesion molecule-1. Suppression of expression of inducible nitric-oxide synthase, tumor necrosis factor-␣, and intracellular adhesion molecule-1 has been reported in PARP-deficient mice and in the presence of pharmacological inhibitors of the enzyme (reviewed in Virá g and Szabó 2002).Overactivation of PARP represents an important mechanism of tissue damage in pathological conditions associated with oxidative/nitrosative stress, including myocardial reperfusion injury, stroke, circulatory shock, autoimmune -cell destruction, diabetic complications, and various forms of heart failure (Szabó et al., 1997;Thiemermann et al., 1997;Zingarelli et al., 1998; Soriano et al., 2001a,b; Pacher et al., 2002a-f;Virá g and Szabó 2002;Szabó 2004a
Recent studies showed that endocytosis is enhanced in neurons exposed to an excitototoxic stimulus. We here confirm and analyze this new phenomenon using dissociated cortical neuronal cultures. NMDA-induced uptake (FITC-dextran or FITC or horseradish peroxidase) occurs in these cultures and is due to endocytosis, not to cell entry through damaged membranes; it requires an excitotoxic dose of NMDA and is dependent on extracellular calcium, but occurs early, while the neuron is still intact and viable. It involves two components, NMDA-induced and constitutive, with different characteristics. Neither component involves specific binding of the endocytosed molecules to a saturable receptor. Strikingly, molecules internalized by the NMDA-induced component are targeted to neuronal nuclei. This component, but not the constitutive one, is blocked by a c-Jun N-terminal protein kinase inhibitor. In conclusion, an excitotoxic dose of NMDA triggers c-Jun N-terminal protein kinase-dependent endocytosis in cortical neuronal cultures, providing an in vitro model of the excitotoxicity-induced endocytosis reported in intact tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.