Chinese-herb nephropathy (CHN) is a progressive renal interstitial fibrosis initially reported after concomitant intake of an anorexigen, (dex)fenfluramine, and a Chinese herb ( Aristolochia fangchi) containing nephrotoxic and carcinogenic aristolochic acid (AA). We thus tested the possible enhancing effect of the active enantiomer dexfenfluramine (DXF) on AA nephrotoxicity in a rat model for CHN. Groups of 12 salt-depleted male Wistar rats received daily subcutaneous injections of 7 mg/kg body weight DXF (DXF group), 7 mg/kg body weight AA (AA group), a combination of the same doses of AA and DXF (AA+DXF group), or vehicle (control group) for up to 35 days. Six animals per group were killed on day 10 and the remaining six on day 35. Renal function was evaluated by determining serum creatinine and urinary leucine aminopeptidase activity. Histological evaluation of kidney samples was performed and tubulointerstitial injuries were semiquantified. The DXF group did not differ from controls for any parameter. Similarly elevated serum creatinine levels, decreased leucine aminopeptidase enzymuria, and renal lesions were observed in the AA and the AA+DXF groups after both 10 and 35 days. The formation of specific AA-DNA adducts in liver and renal tissue samples was assessed by the (32)P-postlabelling method. Specific AA-DNA adduct levels were significantly increased in kidney tissues from AA+DXF rats compared with AA rats. These functional and histological data suggest that DXF does not enhance AA nephrotoxicity in a rat model for CHN. Further investigations are needed to clarify the mechanism by which DXF may enhance AA-DNA adduct formation.
ABSTRACT. Chinese-herb nephropathy (CHN) is a rapidly progressive renal fibrosis associated with the intake of a Chinese herb (Aristolochia fangchi) containing nephrotoxic and carcinogenic aristolochic acids (AA). This study attempted to reproduce the main features of human CHN (renal failure, tubular atrophy, and interstitial fibrosis) in a rat model similar to that of cyclosporin-induced nephropathy. Salt-depleted male Wistar rats received daily subcutaneous injections of either 1 mg/kg body wt AA (low-dose AA group), 10 mg/kg body wt AA (high-dose AA group), or vehicle (control group) for 35 d. On days 10 and 35, assessment of renal function, measurements of urinary excretion of glucose, protein, and leucine aminopeptidase, and histologic analyses were performed (six rats euthanized/group). High-dose AA induced glucosuria, proteinuria, and elevated serum creatinine levels and reduced leucine aminopeptidase enzymuria on days 10 and 35, whereas low-dose AA had no significant effect. Tubular necrosis associated with lymphocytic infiltrates (day 10) and tubular atrophy surrounded by interstitial fibrosis (day 35) were the histologic findings for the high-dose AA-treated rats. In both AA groups, urothelial dysplasia was also observed, as well as fibrohistiocytic sarcoma at the injection site. A short-term model of AA-induced renal fibrosis was established in salt-depleted Wistar rats. These results support the role of AA in human CHN and provide a useful model for examination of the pathophysiologic pathways of renal fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.