BACKGROUND AND PURPOSEQuercetin lowers plasma glucose, normalizes glucose tolerance tests and preserves pancreatic b-cell integrity in diabetic rats. However, its mechanism of action has never been explored in insulin-secreting b-cells. Using the INS-1 b-cell line, the effects of quercetin were determined on glucose-or glibenclamide-induced insulin secretion and on b-cell dysfunctions induced by hydrogen peroxide (H2O2). These effects were analysed along with the activation of the extracellular signal-regulated kinase (ERK)1/2 pathway. N-acetyl-L-cysteine (NAC) and resveratrol, two antioxidants also known to exhibit some anti-diabetic properties, were used for comparison. EXPERIMENTAL APPROACHInsulin release was quantified by the homogeneous time resolved fluorescence method and ERK1/2 activation tested by Western blot experiments. Cell viability was estimated by the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT) colorimetric assay. KEY RESULTSQuercetin (20 mmol·L ), protected b-cell function and viability against oxidative damage induced by 50 mmol·L -1 H2O2 and induced a major phosphorylation of ERK1/2. In the same conditions, resveratrol or NAC were ineffective. CONCLUSION AND IMPLICATIONSQuercetin potentiated glucose and glibenclamide-induced insulin secretion and protected b-cells against oxidative damage. Our study suggested that ERK1/2 played a major role in those effects. The potential of quercetin in preventing b-cell dysfunction associated with diabetes deserves further investigation.
The endothelin system has emerged as a novel target for the treatment of diabetic nephropathy. Endothelin-1 promotes mesangial cell proliferation and sclerosis. However, no direct pathogenic effect of endothelin-1 on podocytes has been shown in vivo and endothelin-1 signaling in podocytes has not been investigated. This study investigated endothelin effects in podocytes during experimental diabetic nephropathy. Stimulation of primary mouse podocytes with endothelin-1 elicited rapid calcium transients mediated by endothelin type A receptors (ETARs) and endothelin type B receptors (ETBRs). We then generated mice with a podocyte-specific double deletion of ETAR and ETBR (NPHS2-Cre3Ednra lox/lox 3Ednrb lox/lox [Pod-ETRKO]). In vitro, treatment with endothelin-1 increased total b-catenin and phospho-NF-kB expression in wild-type glomeruli, but this effect was attenuated in Pod-ETRKO glomeruli. After streptozotocin injection to induce diabetes, wild-type mice developed mild diabetic nephropathy with microalbuminuria, mesangial matrix expansion, glomerular basement membrane thickening, and podocyte loss, whereas Pod-ETRKO mice presented less albuminuria and were completely protected from glomerulosclerosis and podocyte loss, even when uninephrectomized. Moreover, glomeruli from normal and diabetic Pod-ETRKO mice expressed substantially less total b-catenin and phospho-NF-kB compared with glomeruli from counterpart wild-type mice. This evidence suggests that endothelin-1 drives development of glomerulosclerosis and podocyte loss through direct activation of endothelin receptors and NF-kB and b-catenin pathways in podocytes. Notably, both the expression and function of the ETBR subtype were found to be important. Furthermore, these results indicate that activation of the endothelin-1 pathways selectively in podocytes mediates pathophysiologic crosstalk that influences mesangial architecture and sclerosis.
Expression of RBPMS2 is present in visceral SMC precursors. Sustained expression of RBPMS2 inhibits the expression of markers of SMC differentiation by inhibiting bone morphogenetic protein activity, and stimulates SMC proliferation. RBPMS2 transcripts are up-regulated in patients with CIPO; alterations in RBPMS2 function might be involved in digestive motility disorders, particularly those characterized by the presence of muscular lesions (visceral myopathies).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.