Homozygous staggerer (sg) mice show a characteristic severe cerebellar ataxia due to a cell-autonomous defect in the development of Purkinje cells. These cells show immature morphology, synaptic arrangement, biochemical properties and gene expression, and are reduced in numbers. In addition, sg heterozygotes show accelerated dendritic atrophy and cell loss, suggesting that sg has a role in mature Purkinje cells. Effects of this mutation on cerebellar development have been studied for 25 years, but its molecular basis has remained unknown. We have genetically mapped staggerer to an interval of 160 kilobases on mouse chromosome 9 which was found to contain the gene encoding RORalpha, a member of the nuclear hormone-receptor superfamily. Staggerer mice were found to carry a deletion within the RORalpha gene that prevents translation of the ligand-binding homology domain. We propose a model based on these results, in which RORalpha interacts with the thyroid hormone signalling pathway to induce Purkinje-cell maturation.
Mutations in the Drosophila mei-S332 gene cause premature separation of the sister chromatids in late anaphase of meiosis I. Therefore, the mei-S332 protein was postulated to hold the centromere regions of sister chromatids together until anaphase II. The mei-S332 gene encodes a novel 44 kDa protein. Mutations in mei-S332 that differentially affect function in males or females map to distinct domains of the protein. A fusion of mei-S332 to the green fluorescent protein (GFP) is fully functional and localizes specifically to the centromere region of meiotic chromosomes. When sister chromatids separate at anaphase II, mei-S332-GFP disappears from the chromosomes, suggesting that the destruction or release of this protein is required for sister-chromatid separation.
Pudgy (pu) homozygous mice exhibit clear patterning defects at the earliest stages of somitogenesis, resulting in adult mice with severe vertebral and rib deformities. By positional cloning and complementation, we have determined that the pu phenotype is caused by a mutation in the delta-like 3 gene (Dll3), which is homologous to the Notch-ligand Delta in Drosophila. Histological and molecular marker analyses show that the pu mutation disrupts the proper formation of morphological borders in early somite formation and of rostral-caudal compartment boundaries within somites. Viability analysis also indicates an important role in early development. The results point to a key role for a Notch-signalling pathway in the initiation of patterning of vertebrate paraxial mesoderm.
Early outgrowth of the vertebrate embryonic limb requires signalling by the apical ectodermal ridge (AER) to the progress zone (PZ), which in response proliferates and lays down the pattern of the presumptive limb in a proximal to distal progression. Signals from the PZ maintain the AER until the anlagen for the distal phalanges have been formed. The semidominant mouse mutant dactylaplasia (Dac) disrupts the maintenance of the AER, leading to truncation of distal structures of the developing footplate, or autopod. Adult Dac homozygotes thus lack hands and feet except for malformed single digits, whereas heterozygotes lack phalanges of the three middle digits. Dac resembles the human autosomal dominant split hand/foot malformation (SHFM) diseases. One of these, SHFM3, maps to chromosome 10q24 (Refs 6,7), which is syntenic to the Dac region on chromosome 19, and may disrupt the orthologue of Dac. We report here the positional cloning of Dac and show that it belongs to the F-box/WD40 gene family, which encodes adapters that target specific proteins for destruction by presenting them to the ubiquitination machinery. In conjuction with recent biochemical studies, this report demonstrates the importance of this gene family in vertebrate embryonic development.
The Drosophila MEI-S332 protein has been shown to be required for the maintenance of sister-chromatid cohesion in male and female meiosis. The protein localizes to the centromeres during male meiosis when the sister chromatids are attached, and it is no longer detectable after they separate. Drosophila melanogaster male meiosis is atypical in several respects, making it important to define MEI-S332 behavior during female meiosis, which better typifies meiosis in eukaryotes. We find that MEI-S332 localizes to the centromeres of prometaphase I chromosomes in oocytes, remaining there until it is delocalized at anaphase II. By using oocytes we were able to obtain sufficient material to investigate the fate of MEI-S332 after the metaphase II–anaphase II transition. The levels of MEI-S332 protein are unchanged after the completion of meiosis, even when translation is blocked, suggesting that the protein dissociates from the centromeres but is not degraded at the onset of anaphase II. Unexpectedly, MEI-S332 is present during embryogenesis, localizes onto the centromeres of mitotic chromosomes, and is delocalized from anaphase chromosomes. Thus, MEI-S332 associates with the centromeres of both meiotic and mitotic chromosomes and dissociates from them at anaphase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.