A physical map of the chromosome of N. meningitidis Z2491 (serogroup A, subgroup IV-1) has been constructed. Z2491 DNA was digested with NheI, SpeI, SgfI, PacI, BglII, or PmeI, resulting in a limited number of fragments that were resolved by contour-clamped homogeneous electric field (CHEF) electrophoresis. The estimated genome size for this strain was 2,226 kb. To construct the map, probes corresponding to single-copy genes or sequences were used on Southern blots of chromosomal DNA digested with the different mapping enzymes and subjected to CHEF electrophoresis. By determining which fragments from different digests hybridized to each specific probe, it was possible to walk back and forth between digests to form a circular macrorestriction map. The intervals between mapped restriction sites range from 10 to 143 kb in size. A total of 117 markers have been placed on the map; 75 represent identified genes, with the remaining markers defined by anonymous cloned fragments of neisserial DNA. Comparison of the arrangement of genetic loci in Z2491 with that in gonococcal strain FA1090, for which a physical map was previously constructed, revealed complex genomic rearrangements between the two strains. Although gene order is generally conserved over much of the chromosome, a region of approximately 500 kb shows translocation and/or inversion of multiple blocks of markers between the two strains. Even within the relatively conserved portions of the maps, several genetic markers are in different positions in Z2491 and FA1090.
Gene conversion mediates the variation of virulence-associated surface structures on pathogenic microorganisms, which prevents host humoral immune responses from being effective. One of the best-studied gene conversion systems is antigenic variation (Av) of the pilin subunit of the Neisseria gonorrhoeae type IV pilus. To identify cis-acting DNA sequences that facilitate Av, the 700-bp region upstream of the pilin gene pilE was targeted for transposon mutagenesis. Four classes of transposon-associated mutations were isolated, distinguishable by their pilus-associated phenotypes: (i) insertions that did not alter Av or piliation, (ii) insertions that blocked Av, (iii) insertions that interfered with Av, and (iv) insertions that interfered with pilus expression and Av. Mutagenesis of the pilE promoter did not affect the frequency of Av, directly demonstrating that pilin Av is independent of pilE transcription. Two stretches of sequence upstream of pilE were devoid of transposon insertions, and some deletions in these regions were not recoverable, suggesting that they are essential for gonococcal viability. Insertions that blocked pilin Av were located downstream of the RS1 repeat sequence, and deletion of the region surrounding these insertions completely abrogated pilin Av, confirming that specific sequences 5 to pilE are essential for the recombination events underlying pilin Av.
Interleukin-2 (IL-2) mediates cell cycle progression and antiapoptosis in human T cells via several signal transduction pathways. The Tax protein of the human T-cell leukemia virus type I (HTLV-1) deregulates cell growth and alters the role of IL-2 in infected cells. However, Tax-immortalized cells stay dependent on IL-2, suggesting that events besides HTLV-1 gene expression are required for leukemia to develop. Here, IL-2-dependent and -independent events were analysed in a human T cell line immortalized by Tax. These studies show that, of the signaling pathways evaluated, only STAT5 remains dependent. Microarray analyses revealed several genes, including il-5, il-9 and il-13, are uniquely upregulated by IL-2 in the presence of Tax. Bioinformatics and supporting molecular biology show that some of these genes are STAT5 targets, explaining their IL-2 upregulation. These results suggest that IL-2 and viral proteins work together to induce gene expression, promoting the hypothesis that deregulation via the constitutive activation of STAT5 may lead to the IL-2-independent phenotype of HTLV-1-transformed cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.