SUMMARYLegged locomotion is the most common behavior of terrestrial animals and it is assumed to have become highly optimized during evolution. Quadrupeds, for instance, use distinct gaits that are optimal with regard to metabolic cost and have characteristic kinematic features and patterns of inter-leg coordination. In insects, the situation is not as clear. In general, insects are able to alter inter-leg coordination systematically with locomotion speed, producing a continuum of movement patterns. This notion, however, is based on the study of several insect species, which differ greatly in size and mass. Each of these species tends to walk at a rather narrow range of speeds. We have addressed these issues by examining four strains of Drosophila, which are similar in size and mass, but tend to walk at different speed ranges. Our data suggest that Drosophila controls its walking speed almost exclusively via step frequency. At high walking speeds, we invariably found tripod coordination patterns, the quality of which increased with speed as indicated by a simple measure of tripod coordination strength (TCS). At low speeds, we also observed tetrapod coordination and wave gait-like walking patterns. These findings not only suggest a systematic speed dependence of inter-leg movement patterns but also imply that inter-leg coordination is flexible. This was further supported by amputation experiments in which we examined walking behavior in animals after the removal of a hindleg. These animals show immediate adaptations in body posture, leg kinematics and inter-leg coordination, thereby maintaining their ability to walk.
Rosenbaum P, Wosnitza A, Büschges A, Gruhn M. Activity patterns and timing of muscle activity in the forward walking and backward walking stick insect Carausius morosus. J Neurophysiol 104: 1681-1695, 2010. First published July 28, 2010 doi:10.1152/jn.00362.2010. Understanding how animals control locomotion in different behaviors requires understanding both the kinematics of leg movements and the neural activity underlying these movements. Stick insect leg kinematics differ in forward and backward walking. Describing leg muscle activity in these behaviors is a first step toward understanding the neuronal basis for these differences. We report here the phasing of EMG activities and latencies of first spikes relative to precise electrical measurements of middle leg tarsus touchdown and liftoff of three pairs (protractor/ retractor coxae, levator/depressor trochanteris, extensor/flexor tibiae) of stick insect middle leg antagonistic muscles that play central roles in generating leg movements during forward and backward straight walking. Forward walking stance phase muscle (depressor, flexor, and retractor) activities were tightly coupled to touchdown, beginning on average 93 ms prior to and 9 and 35 ms after touchdown, respectively. Forward walking swing phase muscle (levator, extensor, and protractor) activities were less tightly coupled to liftoff, beginning on average 100, 67, and 37 ms before liftoff, respectively. In backward walking the protractor/retractor muscles reversed their phasing compared with forward walking, with the retractor being active during swing and the protractor during stance. Comparison of intact animal and reduced two-and one-middle-leg preparations during forward straight walking showed only small alterations in overall EMG activity but changes in first spike latencies in most muscles. Changing body height, most likely due to changes in leg joint loading, altered the intensity, but not the timing, of depressor muscle activity.
We performed electrophysiological and behavioral experiments in single-leg preparations and intact animals of the stick insect Carausius morosus to understand mechanisms underlying the control of walking speed. At the level of the single leg, we found no significant correlation between stepping velocity and spike frequency of motor neurons (MNs) other than the previously shown modification in flexor (stance) MN activity. However, pauses between stance and swing motoneuron activity at the transition from stance to swing phase and stepping velocity are correlated. Pauses become shorter with increasing speed and completely disappear during fast stepping sequences. By means of extra- and intracellular recordings in single-leg stick insect preparations we found no systematic relationship between the velocity of a stepping front leg and the motoneuronal activity in the ipsi- or contralateral mesothoracic protractor and retractor, as well as flexor and extensor MNs. The observations on the lack of coordination of stepping velocity between legs in single-leg preparations were confirmed in behavioral experiments with intact stick insects tethered above a slippery surface, thereby effectively removing mechanical coupling through the ground. In this situation, there were again no systematic correlations between the stepping velocities of different legs, despite the finding that an increase in stepping velocity in a single front leg is correlated with a general increase in nerve activity in all connectives between the subesophageal and all thoracic ganglia. However, when the tethered animal increased walking speed due to a short tactile stimulus, provoking an escape-like response, stepping velocities of ipsilateral legs were found to be correlated for several steps. These results indicate that there is no permanent coordination of stepping velocities between legs, but that such coordination can be activated under certain circumstances.
SUMMARYIn its natural habitat, Carausius morosus climbs on the branches of bushes and trees. Previous work suggested that stick insects perform targeting movements with their hindlegs to find support more easily. It has been assumed that the animals use position information from the anterior legs to control the touchdown position of the ipsilateral posterior legs. Here we addressed the question of whether not only the hindleg but also the middle leg performs targeting, and whether targeting is still present in a walking animal when influences of mechanical coupling through the ground are removed. If this were the case, it would emphasize the role of underlying neuronal mechanisms. We studied whether targeting occurred in both legs, when the rostral neighboring leg, i.e. either the middle or the front leg, was placed at defined positions relative to the body, and analyzed targeting precision for dependency on the targeted position. Under these conditions, the touchdown positions of the hindlegs show correlation to the position of the middle leg parallel and perpendicular to the body axis, while only weak correlation exists between the middle and front legs, and only in parallel to the body axis. In continuously walking tethered animals, targeting accuracy of the hindlegs and middle legs parallel to the body axis barely differed. However, targeting became significantly more accurate perpendicular to the body axis. Our results suggest that a neural mechanism exists for controlling the touchdown position of the posterior leg but that the strength of this mechanism is segment specific and dependent on the behavioral context in which it is used. Supplementary material available online at
Complex tasks like hunting moving prey in an unpredictable environment require high levels of motor and sensory integration. An animal needs to detect and track suitable prey objects, measure their distance and orientation relative to its own position, and finally produce the correct motor output to approach and capture the prey. In the insect brain, the central complex (CX) is one target area where integration is likely to take place. In this study, we performed extracellular multi-unit recordings on the CX of freely hunting praying mantises (Tenodera sinensis). Initially, we recorded the neural activity of freely moving mantises as they hunted live prey. The recordings showed activity in cells that either reflected the mantis's own movements or the actions of a prey individual, which the mantises focused on. In the latter case, the activity increased as the prey moved and decreased when it stopped. Interestingly, cells ignored the movement of the other prey than the one to which the mantis attended. To obtain quantitative data, we generated simulated prey targets presented on an LCD screen positioned below the clear floor of the arena. The simulated target oscillated back and forth at various angles and distances. We identified populations of cells whose activity patterns were strongly linked to the appearance, movement, and relative position of the virtual prey. We refer to these as sensory responses. We also found cells whose activity preceded orientation movement toward the prey. We call these motor responses. Some cells showed both sensory and motor properties. Stimulation through tetrodes in some of the preparations could also generate similar movements. These results suggest the crucial importance of the CX to prey-capture behavior in predatory insects like the praying mantis and, hence, further emphasize its role in behaviorally and ecologically relevant contexts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.