DORNRÖSCHEN (DRN) (also known as ENHANCER OF SHOOT REGENERATION1; ESR1)and DRN-LIKE (DRNL; also known as ESR2) are two linked paralogues encoding AP2 domain-containing proteins. drn mutants show embryo cell patterning defects and, similarly to drnl mutants, disrupt cotyledon development at incomplete penetrance. drn drnl double mutants with weak or strong drnl alleles show more highly penetrant and extreme phenotypes, including a pin-like embryo without cotyledons, confirming a high degree of functional redundancy for the two genes in embryo patterning. Altered expression of PIN1::PIN1-GFP and DR5::GFP in drn mutant embryos places DRN upstream of auxin transport and response. A yeast two-hybrid screen with DRN followed by coimmunoprecipitation and bimolecular fluorescence complementation revealed PHAVOLUTA (PHV) to be a protein interaction partner in planta. drn phv double mutants show an increased penetrance of embryo cell division defects. DRNL can also interact with PHV and both DRN and DRNL can heterodimerise with additional members of the class III HD-ZIP family, PHABULOSA, REVOLUTA, CORONA and ATHB8. Interactions involve the PAS-like C-terminal regions of these proteins and the DRN/DRNL AP2 domain.
The BIM1 protein which has been implicated in brassinosteroid (BR) signal transduction was identified from a two hybrid screen using the N-terminus, including the AP2 domain, of the transcription factors DORNROESCHEN (DRN) and DORNROESCHEN-LIKE (DRNL) which control embryonic patterning. The protein-protein interaction between BIM1 and DRN or DRNL was confirmed by co-immunoprecipitation and for DRN also in vivo by bimolecular fluorescence complementation. BIM1 can also physically interact with PHAVOLUTA (PHV), another interaction partner of DRN and DRNL. Loss of BIM1 function results in embryo patterning defects at low penetrance, including cell division defects in the hypophyseal region and apical domain defects such as cotyledon fusion and polycotyledony, in addition to polyembryony. BIM1 expression overlaps with that of DRN and DRNL from early globular embryo stages onwards. Higher order mutants between bim1, drn, drnl and phv suggest that although BIM1 may act partially redundantly with DRN in early embryo development, all genes function within the same pathway determining cotyledon development, supporting the hypothesis that they participate in a multimeric transcription factor complex. A role of BIM1 in embryonic development not only implicates a function for brassinosteroids in this process, but the interaction of BIM1 with DRN, involved with auxin signalling, represents a possible point of hormonal crosstalk in embryonic patterning and the first example of an interaction of components of the auxin and BR signalling pathways.
Background: Disseminated soft tissue sarcoma still represents a therapeutic dilemma because effective cytostatics are missing. Therefore we tested TRAIL and Tarolidine (TRD), two substances with apoptogenic properties on human fibrosarcoma (HT1080).
BackgroundTaurolidine (TRD) represents an anti-infective substance with anti-neoplastic activity in many malignant cell lines. So far, the knowledge about the cell death inducing mechanisms and pathways activated by TRD is limited. The aim of this study was therefore, to perform a comparative analysis of cell death induction by TRD simultaneously in different malignant cell lines.Materials and methodsFive different malignant cell lines (HT29/Colon, Chang Liver/Liver, HT1080/fibrosarcoma, AsPC-1/pancreas and BxPC-3/pancreas) were incubated with increasing concentrations of TRD (100 μM, 250 μM and 1000 μM) for 6 h and 24 h. Cell viability, apoptosis and necrosis were analyzed by FACS analysis (Propidiumiodide/AnnexinV staining). Additionally, cells were co-incubated with the caspase Inhibitor z-VAD, the radical scavenger N-Acetylcystein (NAC) and the Gluthation depleting agent BSO to examine the contribution of caspase activation and reactive oxygen species in TRD induced cell death.ResultsAll cell lines were susceptible to TRD induced cell death without resistance toward this anti-neoplastic agent. However, the dose response effects were varying largely between different cell lines. The effect of NAC and BSO co-treatment were highly different among cell lines - suggesting a cell line specific involvement of ROS in TRD induced cell death. Furthermore, impact of z-VAD mediated inhibition of caspases was differing strongly among the cell lines.ConclusionThis is the first study providing a simultaneous evaluation of the anti-neoplastic action of TRD across several malignant cell lines. The involvement of ROS and caspase activation was highly variable among the five cell lines, although all were susceptible to TRD induced cell death. Our results indicate, that TRD is likely to provide multifaceted cell death mechanisms leading to a cell line specific diversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.