Renal cells are used in basic research, disease models, tissue engineering, drug screening, and in vitro toxicology. In order to provide a reliable source of human renal cells, we developed a protocol for the differentiation of human embryonic stem cells into renal epithelial cells. The differentiated stem cells expressed markers characteristic of renal proximal tubular cells and their precursors, whereas markers of other renal cell types were not expressed or expressed at low levels. Marker expression patterns of these differentiated stem cells and in vitro cultivated primary human renal proximal tubular cells were comparable. The differentiated stem cells showed morphological and functional characteristics of renal proximal tubular cells, and generated tubular structures in vitro and in vivo. In addition, the differentiated stem cells contributed in organ cultures for the formation of simple epithelia in the kidney cortex. Bioreactor experiments showed that these cells retained their functional characteristics under conditions as applied in bioartificial kidneys. Thus, our results show that human embryonic stem cells can differentiate into renal proximal tubular-like cells. Our approach would provide a source for human renal proximal tubular cells that are not affected by problems associated with immortalized cell lines or primary cells.
Organs such as the lung and the kidney are composed of epithelial and endothelial tubule-forming networks. To engineer such organs, it would be desirable to control the shape, spatial orientation and interconnectedness of the forming tubules. To study this, channels were formed in extracellular matrix (ECM) gels and were subsequently filled with Madin-Darby canine kidney epithelial cells or human microvascular endothelial cells. After 3-5 days, the epithelial cells self-assembled into tubular structures of up to 1 cm, with a lumen lined by a monolayer of polarized epithelial cells at 10 days. In contrast, endothelial cells assembled into tubules with multiple fine branches. We found that a complex pattern of tubular networks of significant length and regular anatomical shape was achieved by molding ECM gels through microfabricated grooved templates.
The presentation of bioactive ligands on biomaterial surfaces is often confounded by the adsorption of proteins present in the biological milieu, rendering any type of cellular response nonspecific. We have engineered a polyelectrolyte complex membrane that demonstrates specific adhesion of various cell types for both two-dimensional (2D) and three-dimensional (3D) cell culture systems. Specific cell adhesion is achieved by a three-tiered structure: a silica cross-linked polycation as the bottom (first) tier, a nonfouling polyanion-poly(ethylene glycol) (PEG) conjugate as the intermediate (second) tier, and the cell-adhesion ligand as the top (third) tier. Each tier of the membrane was characterized in terms of chemical composition and dimensions. Epithelial cells (primary human cortical renal cells and a hepatocellular carcinoma cell line) cultured on the membranes exhibited little cell attachment on the polyanion-PEG second tier and good cell adhesion on the RGD-modified third tier. Thus, the second tier allowed the effect of cell adhesion due to the ligand (third tier) to be isolated and distinguished from nonspecific cell attachment to the first tier. For the culturing of cells in three dimensions, the three-tiered membrane system was applied using a highly swellable chitosan membrane as the first tier. The resulting cell-membrane construct was uniformly dispersed and centrifuged to form a matrix that interacted intimately with cells in the form of a pellet. Presentation of RGD in the latter format enhanced the viability of human mesenchymal stem cells (hMSCs) over controls without RGD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.