SummaryPolo-like kinases (Plks) perform crucial functions during mitosis, cytokinesis and centriole duplication. Plk2 is activated in early G1 phase and is involved in the reproduction of centrosomes. However, the mechanisms underlying Plk2-induced centriole duplication are incompletely understood. Here, we show that Plk2 directly targets the F-box protein F-box/WD repeat-containing protein 7 (Fbxw7), which is a regulator of the ubiquitin-mediated degradation of cyclin E. Plk2 phosphorylates Fbxw7 on serine 176 and the two proteins form a complex in vitro and in vivo. Phosphorylation of Fbxw7 by Plk2 induces destabilization of the F-box protein resulting in accumulation of cyclin E and increased potential for centriole reproduction. In addition, loss of Fbxw7 in human cells leads to uncontrolled centriole duplication, highlighting the importance of Fbxw7 regulation by Plk2. These findings define a previously unknown Plk2-dependent pathway involved at the onset of S phase and in centrosome duplication.
Duplication of the centrosome is well controlled during faithful cell division while deregulation of this process leads to supernumary centrosomes, chromosome missegregation and aneuploidy, a hallmark of many cancer cells. We previously reported that Polo-like kinase 2 (Plk2) is activated near the G1/S phase transition, and regulates the reproduction of centrosomes. In search for Plk2 interacting proteins we have identified NPM/B23 (Nucleophosmin) as a novel Plk2 binding partner. We find that Plk2 and NPM/B23 interact in vitro in a Polo-box dependent manner. An association between both proteins was also observed in vivo. Moreover, we show that Plk2 phosphorylates NPM/B23 on serine 4 in vivo in S-phase. Notably, expression of a non-phosphorylatable NPM/B23 S4A mutant interferes with centriole reduplication in S-phase arrested cells and leads to a dilution of centriole numbers in unperturbed U2OS cells. The corresponding phospho-mimicking mutants have the opposite effect and their expression leads to the accumulation of centrioles. These findings suggest that NPM/B23 is a direct target of Plk2 in the regulation of centriole duplication and that phosphorylation on serine 4 can trigger this process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.