Anastomotic insufficiencies still represent one of the most severe complications in colorectal surgery. Since tissue perfusion highly affects anastomotic healing, its objective assessment is an unmet clinical need. Indocyanine green-based fluorescence angiography (ICG-FA) and hyperspectral imaging (HSI) have received great interest in recent years but surgeons have to decide between both techniques. For the first time, two data processing pipelines capable of reconstructing an ICG-FA correlating signal from hyperspectral data were developed. Results were technically evaluated and compared to ground truth data obtained during colorectal resections. In 87% of 46 data sets, the reconstructed images resembled the ground truth data. The combined applicability of ICG-FA and HSI within one imaging system might provide supportive and complementary information about tissue vascularization, shorten surgery time, and reduce perioperative mortality.
Background Hyperspectral imaging (HSI) during surgical procedures is a new method for perfusion quantification and tissue discrimination. Its use has been limited to open surgery due to large camera sizes, missing color video, or long acquisition times. A hand-held, laparoscopic hyperspectral camera has been developed now to overcome those disadvantages and evaluated clinically for the first time. Methods In a clinical evaluation study, gastrointestinal resectates of ten cancer patients were investigated using the laparoscopic hyperspectral camera. Reference data from corresponding anatomical regions were acquired with a clinically approved HSI system. An image registration process was executed that allowed for pixel-wise comparisons of spectral data and parameter images (StO2: oxygen saturation of tissue, NIR PI: near-infrared perfusion index, OHI: organ hemoglobin index, TWI: tissue water index) provided by both camera systems. The mean absolute error (MAE) and root mean square error (RMSE) served for the quantitative evaluations. Spearman’s rank correlation between factors related to the study design like the time of spectral white balancing and MAE, respectively RMSE, was calculated. Results The obtained mean MAEs between the TIVITA® Tissue and the laparoscopic hyperspectral system resulted in StO2: 11% ± 7%, NIR PI: 14±3, OHI: 14± 5, and TWI: 10 ± 2. The mean RMSE between both systems was 0.1±0.03 from 500 to 750 nm and 0.15 ±0.06 from 750 to 1000 nm. Spearman’s rank correlation coefficients showed no significant correlation between MAE or RMSE and influencing factors related to the study design. Conclusion Qualitatively, parameter images of the laparoscopic system corresponded to those of the system for open surgery. Quantitative deviations were attributed to technical differences rather than the study design. Limitations of the presented study are addressed in current large-scale in vivo trials.
Innovations and new advancements in intraoperative real-time imaging have gained significant importance in the field of gastric cancer surgery in the recent past. Currently, the most promising procedures include indocyanine green fluorescence imaging (ICG-FI) and hyperspectral imaging or multispectral imaging (HSI, MSI). ICG-FI is utilized in a broad range of clinical applications, e.g., assessment of perfusion or lymphatic drainage, and additional implementations are currently investigated. HSI is still in the experimental phase and its value and clinical relevance require further evaluation, but initial studies have shown a successful application in perfusion assessment, and prospects concerning non-invasive tissue and tumor classification are promising. The application of machine learning and artificial intelligence technologies might enable an automatic evaluation of the acquired image data in the future. Both methods facilitate the accurate visualization of tissue characteristics that are initially indistinguishable for the human eye. By aiding surgeons in optimizing the surgical procedure, image-guided surgery can contribute to the oncologic safety and reduction of complications in gastric cancer surgery and recent advances hold promise for the application of HSI in intraoperative tissue diagnostics.
Background: Novel intraoperative imaging techniques, namely, hyperspectral (HSI) and fluorescence imaging (FI), are promising with respect to reducing severe postoperative complications, thus increasing patient safety. Both tools have already been used to evaluate perfusion of the gastric conduit after esophagectomy and before anastomosis. To our knowledge, this is the first study evaluating both modalities simultaneously during esophagectomy. Methods: In our pilot study, 13 patients, who underwent Ivor Lewis esophagectomy and gastric conduit reconstruction, were analyzed prospectively. HSI and FI were recorded before establishing the anastomosis in order to determine its optimum position. Results: No anastomotic leak occurred during this pilot study. In five patients, the imaging methods resulted in a more peripheral adaptation of the anastomosis. There were no significant differences between the two imaging tools, and no adverse events due to the imaging methods or indocyanine green (ICG) injection occurred. Conclusions: Simultaneous intraoperative application of both modalities was feasible and not time consuming. They are complementary with regard to the ideal anastomotic position and may contribute to better surgical outcomes. The impact of their simultaneous application will be proven in consecutive prospective trials with a large patient cohort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.