Dendritic cells have the remarkable property of presenting any incoming antigen. To do so they must not only capture antigens with high efficiency and broad specificity, but must also maximize their capacity to load class II molecules of the major histocompatibility complex (MHC) with antigenic peptides in order to present a large array of epitopes from different proteins, each at a sufficient copy number. Here we show that formation of peptide-MHC class II complexes is boosted by inflammatory stimuli that induce maturation of dendritic cells. In immature dendritic cells, class II molecules are rapidly internalized and recycled, turning over with a half-life of about 10 hours. Inflammatory stimuli induce a rapid and transient boost of class II synthesis, while the half-life of class II molecules increases to over 100 hours. These coordinated changes result in the rapid accumulation of a large number of long-lived peptide-loaded MHC class II molecules capable of stimulating T cells even after several days. The capacity of dendritic cells to load many antigenic peptides over a short period of initial exposure to inflammatory stimuli could favour presentation of infectious antigens.
Dendritic cells (DCs) capture Ags or viruses in peripheral tissue to transport them to lymphoid organs to induce cellular T cell responses. Recently, a DC-specific C-type lectin was identified, DC-specific ICAM-grabbing non-integrin (DC-SIGN), that functions as cell adhesion receptor mediating both DC migration and T cell activation. DC-SIGN also functions as an HIV-1R that captures HIVgp120 and facilitates DC-induced HIV transmission of T cells. Internalization motifs in the cytoplasmic tail of DC-SIGN hint to a function of DC-SIGN as endocytic receptor. In this study we demonstrate that on DCs DC-SIGN is rapidly internalized upon binding of soluble ligand. Mutating a putative internalization motif in the cytoplasmic tail reduces ligand-induced internalization. Detailed analysis using ratio fluorescence imaging and electron microscopy showed that DC-SIGN-ligand complexes are targeted to late endosomes/lysosomes. Moreover, ligands internalized by DC-SIGN are efficiently processed and presented to CD4+ T cells. The distinct pattern of expression of C-type lectins on DCs in situ and their nonoverlapping Ag recognition profile hint to selective functions of these receptors to allow a DC to recognize a wide variety of Ags and to process these to induce T cell activation. These data point to a novel function of the adhesion receptor DC-SIGN as an efficient DC-specific Ag receptor that can be used as a target to induce viral and antitumor immunity.
Dendritic cells (DCs) are highly efficient antigen-presenting cells (APCs) that collect antigen in body tissues and transport them to draining lymph nodes. Antigenic peptides are loaded onto major histocompatibility complex (MHC) molecules for presentation to naive T cells, resulting in the induction of cellular and humoral immune responses. DCs take up antigen through phagocytosis, pinocytosis, and endocytosis via different groups of receptor families, such as Fc receptors for antigen-antibody complexes, C-type lectin receptors (CLRs) for glycoproteins, and pattern recognition receptors, such as Toll-like receptors (TLRs), for microbial antigens. Uptake of antigen by CLRs leads to presentation of antigens on MHC class I and II molecules. DCs are well equipped to distinguish between self- and nonself-antigens by the variable expression of cell-surface receptors such as CLRs and TLRs. In the steady state, DCs are not immunologically quiescent but use their antigen-handling capacities to maintain peripheral tolerance. DCs are continuously sampling and presenting self- and harmless environmental proteins to silence immune activation. Uptake of self-components in the intestine and airways are good examples of sites where continuous presentation of self- and foreign antigens occurs without immune activation. In contrast, efficient antigen-specific immune activation occurs upon encounter of DCs with nonself-pathogens. Recognition of pathogens by DCs triggers specific receptors such as TLRs that result in DC maturation and subsequently immune activation. Here we discuss the concept that cross talk between TLRs and CLRs, differentially expressed by subsets of DCs, accounts for the different pathways to peripheral tolerance, such as deletion and suppression, and immune activation.
The human gastric pathogen Helicobacter pylori spontaneously switches lipopolysaccharide (LPS) Lewis (Le) antigens on and off (phase-variable expression), but the biological significance of this is unclear. Here, we report that Le+
H. pylori variants are able to bind to the C-type lectin DC-SIGN and present on gastric dendritic cells (DCs), and demonstrate that this interaction blocks T helper cell (Th)1 development. In contrast, Le− variants escape binding to DCs and induce a strong Th1 cell response. In addition, in gastric biopsies challenged ex vivo with Le+ variants that bind DC-SIGN, interleukin 6 production is decreased, indicative of increased immune suppression. Our data indicate a role for LPS phase variation and Le antigen expression by H. pylori in suppressing immune responses through DC-SIGN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.