The objective of this study was to develop a physiologically based pharmacokinetic (PBPK) model for amoxicillin for nonpregnant, pregnant and postpartum populations by compiling a database incorporating reported changes in the anatomy and physiology throughout the postpartum period. A systematic literature search was conducted to collect data on anatomical and physiological changes in postpartum women. Empirical functions were generated describing the observed changes providing the basis for a generic PBPK framework. The fraction unbound (f u) of predominantly albumin-bound drugs was predicted in postpartum women and compared with experimentally observed values. Finally, a specific amoxicillin PBPK model was newly developed, verified for non-pregnant populations and translated into the third trimester of pregnancy (29.4-36.9 gestational weeks) and early postpartum period (drug administration 1.5-3.8 h after delivery). Pharmacokinetic predictions were evaluated using published clinical data. The literature search yielded 105 studies with 1092 anatomical and physiological data values on 3742 postpartum women which were used to generate various functions describing the observed trends. The f u could be adequately scaled to postpartum women. The pregnancy PBPK model predicted amoxicillin disposition adequately as did the postpartum PBPK model, although clearance was somewhat underestimated. While more research is needed to establish fully verified postpartum PBPK models, this study provides a repository of anatomical and physiological changes in postpartum women that can be applied to future modeling efforts. Ultimately, structural refinement of the developed postpartum PBPK model could be used to investigate drug transfer to the neonate via breast-feeding in silico.
Movement of xenobiotic substances across the blood–brain barrier (BBB) is tightly regulated by various transporter proteins, especially the efflux transporters P-glycoprotein (P-gp/MDR1) and breast cancer resistance protein (BCRP). Avoiding drug efflux at the BBB is a unique challenge for the development of new central nervous system (CNS) drugs. Drug efflux at the BBB is described by the partition coefficient of unbound drug between brain and plasma (Kp,uu,brain) which is typically obtained from in vivo and often additionally in vitro measurements. Here, we describe a new method for the rapid estimation of the in vivo drug efflux at the BBB of rats: the measurement of the partition coefficient of a drug between brain and skeletal muscle (Kp,brain/muscle). Assuming a closely similar distribution of drugs into the brain and muscle and that the efflux transporters are only expressed in the brain, Kp,brain/muscle, similar to Kp,uu,brain, reflects the efflux at the BBB. The new method requires a single in vivo experiment. For 64 compounds from different research programs, we show the comparability to other approaches used to obtain Kp,uu,brain. P-gp- and BCRP-overexpressing cell systems are valuable in vitro tools for prescreening. Drug efflux at the BBB can be most accurately predicted based on a simple algorithm incorporating data from both in vitro assays. In conclusion, the combined use of our new in vivo method and the in vitro tools allows an efficient screening method in drug discovery with respect to efflux at the BBB.
Increasing affinity to lung tissue is an important strategy to achieve pulmonary retention and to prolong the duration of effect in the lung. As the lung is a very heterogeneous organ, differences in structure and blood flow may influence local pulmonary disposition. Here, a novel lung preparation technique was employed to investigate regional lung distribution of four drugs (salmeterol, fluticasone propionate, linezolid, and indomethacin) after intravenous administration in rats. A semi-mechanistic model was used to describe the observed drug concentrations in the trachea, bronchi, and the alveolar parenchyma based on tissue specific affinities (Kp) and blood flows. The model-based analysis was able to explain the pulmonary pharmacokinetics (PK) of the two neutral and one basic model drugs, suggesting up to six-fold differences in Kp between trachea and alveolar parenchyma for salmeterol. Applying the same principles, it was not possible to predict the pulmonary PK of indomethacin, indicating that acidic drugs might show different pulmonary PK characteristics. The separate estimates for local Kp, tracheal and bronchial blood flow were reported for the first time. This work highlights the importance of lung physiology- and drug-specific parameters for regional pulmonary tissue retention. Its understanding is key to optimize inhaled drugs for lung diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.