Viruses are abundant yet understudied members of soil environments that influence terrestrial biogeochemical cycles. Here, we characterized the dsDNA viral diversity in biochar-amended agricultural soils at the preplanting and harvesting stages of a tomato growing season via paired total metagenomes and viral size fraction metagenomes (viromes). Size fractionation prior to DNA extraction reduced sources of nonviral DNA in viromes, enabling the recovery of a vaster richness of viral populations (vOTUs), greater viral taxonomic diversity, broader range of predicted hosts, and better access to the rare virosphere, relative to total metagenomes, which tended to recover only the most persistent and abundant vOTUs. Of 2961 detected vOTUs, 2684 were recovered exclusively from viromes, while only three were recovered from total metagenomes alone. Both viral and microbial communities differed significantly over time, suggesting a coupled response to rhizosphere recruitment processes and/or nitrogen amendments. Viral communities alone were also structured along an 18 m spatial gradient. Overall, our results highlight the utility of soil viromics and reveal similarities between viral and microbial community dynamics throughout the tomato growing season yet suggest a partial decoupling of the processes driving their spatial distributions, potentially due to differences in dispersal, decay rates, and/or sensitivities to soil heterogeneity.
Arthropod genomes contain sequences derived from integrations of DNA and nonretroviral RNA viruses. These sequences, known as endogenous viral elements (EVEs), have been acquired over the course of evolution and have been proposed to serve as a record of past viral infections. Recent evidence indicates that EVEs can function as templates for the biogenesis of PIWI-interacting RNAs (piRNAs) in some mosquito species and cell lines, raising the possibility that EVEs may serve as a source of immunological memory in these organisms. However, whether piRNAs are derived from EVEs or serve an antiviral function in other arthropod species is unknown. Here, we used publicly available genome assemblies and small RNA sequencing data sets to characterize the repertoire and function of EVEs across 48 arthropod genomes. We found that EVEs are widespread in arthropod genomes and primarily correspond to unclassified single-stranded RNA (ssRNA) viruses and viruses belonging to theRhabdoviridaeandParvoviridaefamilies. Additionally, EVEs were enriched in piRNA clusters in a majority of species, and we found that production of primary piRNAs from EVEs is common, particularly for EVEs located within piRNA clusters. While the abundance of EVEs within arthropod genomes and the frequency with which EVEs give rise to primary piRNAs generally support the hypothesis that EVEs contribute to an antiviral response via the piRNA pathway, limited nucleotide identity between currently described viruses and EVEs identified here likely limits the extent to which this process plays a role during infection with known viruses in the arthropod species analyzed.IMPORTANCEOur results greatly expand the knowledge of EVE abundance, diversity, and function in an exceptionally wide range of arthropod species. We found that while previous findings in mosquitoes regarding the potential of EVEs to serve as sources of immunological memory via the piRNA pathway may be generalized to other arthropod species, speculation regarding the antiviral function of EVE-derived piRNAs should take into context the fact that EVEs are, in the vast majority of cases, not similar enough to currently described viruses at the nucleotide level to serve as sources of antiviral piRNAs against them.
Background Peatlands are expected to experience sustained yet fluctuating higher temperatures due to climate change, leading to increased microbial activity and greenhouse gas emissions. Despite mounting evidence for viral contributions to these processes in peatlands underlain with permafrost, little is known about viruses in other peatlands. More generally, soil viral biogeography and its potential drivers are poorly understood at both local and global scales. Here, 87 metagenomes and five viral size-fraction metagenomes (viromes) from a boreal peatland in northern Minnesota (the SPRUCE whole-ecosystem warming experiment and surrounding bog) were analyzed for dsDNA viral community ecological patterns, and the recovered viral populations (vOTUs) were compared with our curated PIGEON database of 266,125 vOTUs from diverse ecosystems. Results Within the SPRUCE experiment, viral community composition was significantly correlated with peat depth, water content, and carbon chemistry, including CH4 and CO2 concentrations, but not with temperature during the first 2 years of warming treatments. Peat vOTUs with aquatic-like signatures (shared predicted protein content with marine and/or freshwater vOTUs) were significantly enriched in more waterlogged surface peat depths. Predicted host ranges for SPRUCE vOTUs were relatively narrow, generally within a single bacterial genus. Of the 4326 SPRUCE vOTUs, 164 were previously detected in other soils, mostly peatlands. None of the previously identified 202,371 marine and freshwater vOTUs in our PIGEON database were detected in SPRUCE peat, but 0.4% of 80,714 viral clusters (VCs, grouped by predicted protein content) were shared between soil and aquatic environments. On a per-sample basis, vOTU recovery was 32 times higher from viromes compared with total metagenomes. Conclusions Results suggest strong viral “species” boundaries between terrestrial and aquatic ecosystems and to some extent between peat and other soils, with differences less pronounced at higher taxonomic levels. The significant enrichment of aquatic-like vOTUs in more waterlogged peat suggests that viruses may also exhibit niche partitioning on more local scales. These patterns are presumably driven in part by host ecology, consistent with the predicted narrow host ranges. Although more samples and increased sequencing depth improved vOTU recovery from total metagenomes, the substantially higher per-sample vOTU recovery after viral particle enrichment highlights the utility of soil viromics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.