The architecture of human chromosomes in interphase nuclei is still largely unknown. Microscopy studies have indicated that specific regions of chromosomes are located in close proximity to the nuclear lamina (NL). This has led to the idea that certain genomic elements may be attached to the NL, which may contribute to the spatial organization of chromosomes inside the nucleus. However, sequences in the human genome that interact with the NL in vivo have not been identified. Here we construct a high-resolution map of the interaction sites of the entire genome with NL components in human fibroblasts. This map shows that genome-lamina interactions occur through more than 1,300 sharply defined large domains 0.1-10 megabases in size. These lamina-associated domains (LADs) are typified by low gene-expression levels, indicating that LADs represent a repressive chromatin environment. The borders of LADs are demarcated by the insulator protein CTCF, by promoters that are oriented away from LADs, or by CpG islands, suggesting possible mechanisms of LAD confinement. Taken together, these results demonstrate that the human genome is divided into large, discrete domains that are units of chromosome organization within the nucleus.
The transforming genes of oncogenic retroviruses are homologous to a group of evolutionary conserved cellular onc genes. The human cellular homologue (c-abl) of the transforming sequence of Abelson murine leukaemia virus (A-MuL V) was recently shown to be located on chromosome 9. The long arm of this chromosome is involved in a specific translocation with chromosome 22, the Philadelphia translocation (Ph1), t(9; 22) (q34, q11), which occurs in patients with chronic myelocytic leukaemia (CML)3-5. Here we investigate whether the c-abl gene is included in this translocation. Using c-abl and v-abl hybridization probes on blots of somatic cell hybrids, positive hybridization is found when the 22q- (the Philadelphia chromosome), and not the 9q+ derivative of the translocation, is present in the cell hybrids. From this we conclude that in CML, c-abl sequences are translocated from chromosome 9 to chromosome 22q-. This finding is a direct demonstration of a reciprocal exchange between the two chromosomes and suggests a role for the c-abl gene in the generation of CML.
The human c-ab1 oncogene maps within the region (q34-qter) of chromosome 9 which is translocated to chromosome 22, the Philadelphia (Ph') chromosome, in chronic myelocytic leukaemia (CML). The position of the Ph' chromosomal break point is shown to be variable and, in one CML patient, has been localized immediately 5' of, or within, the c-ab1 oncogene. A DNA restriction fragment corresponding to this site has been molecularly cloned and shown to represent a chimaeric fragment of DNA from chromosomes 9 and 22.
Checkpoints of DNA integrity are conserved throughout evolution, as are the kinases ATM (Ataxia Telangiectasia mutated) and ATR (Ataxia- and Rad-related), which are related to phosphatidylinositol (PI) 3-kinase [1] [2] [3]. The ATM gene is not essential, but mutations lead to ataxia telangiectasia (AT), a pleiotropic disorder characterised by radiation sensitivity and cellular checkpoint defects in response to ionising radiation [4] [5] [6]. The ATR gene has not been associated with human syndromes and, structurally, is more closely related to the canonical yeast checkpoint genes rad3(Sp) and MEC1(Sc) [7] [8]. ATR has been implicated in the response to ultraviolet (UV) radiation and blocks to DNA synthesis [8] [9] [10] [11], and may phosphorylate p53 [12] [13], suggesting that ATM and ATR may have similar and, perhaps, complementary roles in cell-cycle control after DNA damage. Here, we report that targeted inactivation of ATR in mice by disruption of the kinase domain leads to early embryonic lethality before embryonic day 8.5 (E8.5). Heterozygous mice were fertile and had no aberrant phenotype, despite a lower ATR mRNA level. No increase was observed in the sensitivity of ATR(+/-) embryonic stem (ES) cells to a variety of DNA-damaging agents. Attempts to target the remaining wild-type ATR allele in heterozygous ATR(+/-) ES cells failed, supporting the idea that loss of both alleles of the ATR gene, even at the ES-cell level, is lethal. Thus, in contrast to the closely related checkpoint gene ATM, ATR has an essential function in early mammalian development.
The localization of cellular oncogenes near the break points of tumour-specific chromosomal aberrations suggests an involvement of these genes in the generation of neoplasms. Recently, we demonstrated the translocation of the human cellular homologue (c-ab1) of the transforming sequence of Abelson murine leukaemia virus (A-MuLV) from chromosome 9 to the Philadelphia chromosome (Ph1) in chronic myelocytic leukaemia (CML). In an attempt to investigate the significance of this translocation in the pathogenesis of CML, we have now studied two CML patients with complex translocations, t(9; 11; 22) and t(1; 9; 22), and two CML Ph1-negative patients with apparently normal karyotypes. In addition to using blot hybridization with human c-ab1 probes and DNA from rodent: CML cell hybrids as before, we have used in situ hybridization of these probes directly to metaphase chromosomes of CML patients. These studies show that the c-ab1 gene is translocated in Ph1-positive but not in Ph1-negative CML patients. CML without the Ph1 chromosome seems to be a distinct entity with a different origin, and this view is supported by clinical observations including correlations which reveal a poorer prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.