Previously we showed the existence of rat and mouse anterior pituitary cells coexpressing mRNA from two or more hormone genes in which production and/or storage of the corresponding hormones were not detectable. To substantiate a putative function for these cells, we investigated whether these phenotypes were retained during long-term reaggregate cell culture and whether protagonist regulatory factors could expand cell populations expressing particular hormone mRNA combinations. After 4-wk culture and treatments, aggregates were trypsinized and single cells collected by means of a fluo-rescence-activated cell sorter. Hormone mRNAs were detected by single-cell RT-PCR. Combinatorial hormone mRNA expression was retained in culture. Both estradiol (E2) and GnRH (1 nM) markedly augmented the proportion of cells expressing prolactin (PRL) mRNA together with other hormone mRNAs and cells expressing glycoprotein subunit (GSU)-alpha mRNA together with other hormone mRNAs. GnRH strongly increased the proportion of cells containing alphaGSU mRNA alone, but E2 did not. GnRH and (E2) affected the expansion of a population (approximately 20% of all cells) coexpressing PRL and alphaGSU mRNA without betaGSUs. Immunostaining of stored hormone on tissue sections revealed colocalization of PRL and alphaGSU in the E2- but not in the GnRH-treated cells. The present findings suggest that cells coexpressing different pituitary hormone mRNAs form a distinct population that survives without extrapituitary factors. Their occurrence can be markedly modified by regulatory factors. Certain hormone regimens favor unique coexpressions distinctly at mRNA and protein level. These peculiar characteristics support the notion that combinatorial expression of hormone genes in the pituitary serves a biological role.
The expression of mRNA of growth hormone (GH), prolactin (PRL), pro-opiomelanocortin (POMC) and the common glycoprotein hormone alpha-subunit (alphaGSU) was studied by means of single cell reverse transcriptase-polymerase chain reaction in male mouse pituitary cells at key time points of fetal and postnatal development: embryonic day 16 (E16); postnatal day 1 (P1) and young-adult age (P38). At E16, the hormone mRNAs examined were detectable, although only in 44% of total cells. Most of the hormone-positive cells expressed only one of the tested hormone mRNAs (monohormonal) but 14% of them contained more than one hormone mRNA (plurihormonal cells). Combinations of GH mRNA with PRL mRNA, of alphaGSU mRNA with GH and/or PRL mRNA and of POMC mRNA with GH and/or PRL mRNA or alphaGSU mRNA were found. As expected, the proportion of hormone-positive cells rose as the mouse aged. The proportions of plurihormonal cells followed a developmental pattern independent of that of monohormonal cells and characteristic for each hormone mRNA examined. Cells coexpressing POMC mRNA with GH or PRL mRNA significantly rose in proportion between E16 and P1, while the proportion of cells coexpressing GH and PRL mRNA markedly increased between P1 and P38. The occurrence of cells displaying combined expression of alphaGSU mRNA with GH and/or PRL mRNA did not significantly change during development. Remarkably, the population of cells expressing PRL mRNA only, was larger at E16 than at P1 and expanded again thereafter. In conclusion, the normal mouse pituitary develops a cell population that is capable of expressing multiple hormone mRNAs, thereby combining typical phenotypes of different cell lineages. These plurihormonal cells are already present during embryonic life. This population is of potential physiological relevance because development-related factors appear to determine which hormone mRNAs are preferentially coexpressed. Coexpression of multiple hormone mRNAs may represent a mechanism to respond to temporally increased endocrine demands. The data also suggest that the control of combined hormone expression is different from that of single hormone expression, raising questions about the current view on pituitary cell lineage specifications.
Cells displaying combined expression of different pituitary hormone genes (further referred to as 'multi-hormone mRNA cells') were identified in normal rat and mouse pituitary by single cell RT-PCR. These cells do not seem to produce or store all the respective hormones the mRNAs encode for. The cells are already developed at day 16 of embryonic life (E16) in the mouse. Different peptides, such as gamma3-melanocyte-stimulating hormone (gamma3-MSH) and gonadotropin-releasing hormone (GnRH), affect different subsets of these cells. In culture, estrogen and GnRH increase the number of 'multi-hormone mRNA cells' that contain prolactin (PRL) mRNA or mRNA of the alpha-subunit of the glycoprotein hormones (alpha-GSU) but not the number of 'multi-hormone mRNA cells' not containing PRL or alpha-GSU mRNA. 'Multi-hormone mRNA cells' may function as 'reserve cells' in which a particular hormone mRNA may be translated under a particular physiological condition demanding a rapid increase of that hormone.
As studied by single cell RT-PCR of pituitary hormones, we demonstrated that the pituitaries of rats and mice contain a subpopulation of cells that express two or more hormone phenotypes typically belonging to lineages that are branched separately early during embryonic development, such as glycoprotein hormone alpha-subunit (alphaGSU) mRNA + PRL mRNA, alphaGSU mRNA + POMC mRNA, and POMC mRNA + GH or PRL mRNA. GnRH in vitro selectively expands the population of cells coexpressing alphaGSU mRNA + PRL mRNA, and CRH selectively increases the proportion of cells coexpressing alphaGSU mRNA + POMC mRNA. Colocalization of alphaGSU + PRL or alphaGSU + POMC could not be detected by double immunofluorescence. This lineage promiscuity was also observed in the pituitary in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.