An infrared spectroscopic study of the nature of zinc carboxylates in oil paintingsHermans, J.J.; Keune, K.; van Loon, A.; Iedema, P.D. Published in:Journal of analytical atomic spectrometry DOI:10.1039/c5ja00120jLink to publication Citation for published version (APA):Hermans, J. J., Keune, K., van Loon, A., & Iedema, P. D. (2015). An infrared spectroscopic study of the nature of zinc carboxylates in oil paintings. Journal of analytical atomic spectrometry, 30(7), 1600-1608. DOI: 10.1039/c5ja00120j General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Download date: 12 May 2018An infrared spectroscopic study of the nature of zinc carboxylates in oil paintings † Joen J. Hermans, * Katrien Keune, Annelies van Loon and Piet D. IedemaThe formation of metal soaps is a major problem for oil paintings conservators. The complexes of either lead or zinc and fatty acids are the product of reactions between common pigments and the oil binder, and they are associated with many types of degradation that affect the appearance and stability of oil paint layers.Fourier transform infrared spectroscopy (FTIR) reveals that a paint sample from The Woodcutter (after Millet) by Vincent van Gogh contains two distinct zinc carboxylate species, one similar to crystalline zinc palmitate and one that is characterized by a broadened asymmetric stretch COO À band shifted to 1570-1590 cm À1 . This observation has been made in many paintings. Although several hypotheses exist to explain the shifted broad carboxylate band, these were not supported by experimental evidence. In this paper, experiments were carried out to characterize the second zinc carboxylate type. It is shown that neither variations in the composition of zinc soaps (i.e. zinc soaps containing mixtures of fatty acids or metals) nor fatty acids adsorbed on pigment surfaces are responsible for the second zinc carboxylate species. X-Ray diffraction (XRD) and FTIR analysis indicate that the broad COO À band represents amorphous zinc carboxylates. These species can be interpreted as either non-crystalline zinc soaps or zinc ions bound to carboxylate moieties on the polymerized oil network, a system similar to ionomers.These findings uncover an intermediate stage of metal soap-related degradation of oil paintings, and lead the way to impr...
We use ATR-FTIR and SAXS to demonstrate that oil paint binding media go through an ionomer-like state during ageing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.