Anxiety disorders are the most prevalent central nervous system diseases imposing a high social burden to our society. Emotional processing is particularly controlled by GABA-ergic transmission in the amygdala. Using in situ hybridization and immunohistochemistry we now investigated changes in the expression of GABA synthesizing enzymes (GAD65 and GAD67), GABAA (α1–5, β1–3, γ1–2) and GABAB receptor subunits (GBBR1, GBBR2) in amygdaloid nuclei of high anxiety-related behavior (HAB) mice in comparison to mice selected for normal anxiety-related behavior (NAB). Levels of GAD65 and GAD67 mRNAs and protein, as well as those of GABA were increased in the amygdala of HAB mice. Relative to NAB controls, mRNA expression of the GABAA receptor subunits β1, β2 and γ2 was specifically increased in the basolateral amygdala of HAB mice while transcription of α5 and γ1 subunits was reduced in the central and medial amygdala. On the protein level, increases in β2 and γ2 subunit immunoreactivities were evident in the basolateral amygdala of HAB mice. No change in GABAB receptor expression was observed. These findings point towards an imbalanced GABA-ergic neurotransmission in the amygdala of HAB mice. On the other hand, FosB, a marker for neuronal activity, was increased in principal neurons of the basolateral amygdala in HAB mice, reflecting activation of excitatory neurons, possibly as a consequence of reduced GABA-ergic tonic inhibition through α5 and γ1 containing receptors. Ultimately these mechanisms may lead to the compensatory activation of GABA transmission, as indicated by the increased expression of GAD65/67 in HAB mice.
Epigenetic mechanisms like altered histone acetylation may have a crucial role in epileptogenesis. In two mouse models of temporal lobe epilepsy, we investigated changes in the expression of class II histone deacetylases (HDAC), a group of signal transducers that shuttle between nucleus and cytoplasm. Intrahippocampal injection of kainic acid (KA) induced a status epilepticus, development of spontaneous seizures (after 3 days), and finally chronic epilepsy and granule cell dispersion. Expression of class II HDAC mRNAs was investigated at different time intervals after KA injection in the granule cell layers and in sectors CA1 and CA3 contralateral to the site of KA injection lacking neurodegeneration. Increased expression of HDAC5 and 9 mRNAs coincided with pronounced granule cell dispersion in the KA-injected hippocampus at late intervals (14-28 days after KA) and equally affected both HDAC9 splice variants. In contrast, in the pilocarpine model (showing no granule cell dispersion), we observed decreases in the expression of HDAC5 and 9 at the same time intervals. Beyond this, striking similarities between both temporal lobe epilepsy models such as fast decreases in HDAC7 and 10 mRNAs during the acute status epilepticus were observed, notably also in the contralateral hippocampus not affected by neurodegeneration. The particular patterns of HDAC mRNA expression suggest a role in epileptogenesis and granule cell dispersion. Reduced expression of HDACs may result in increased expression of pro-and anticonvulsive proteins. On the other hand, export of HDACs from the nucleus into the cytoplasm could allow for deacetylation of cytoplasmatic proteins involved in axonal and dendritic remodeling, like granule cell dispersion. Keywords: epileptogenesis, granule cell dispersion, HDAC9, histone deacetylases, status epilepticus, temporal lobe epilepsy. Temporal lobe epilepsy (TLE) comprises about 30% of all epilepsies and about half of the TLE patients are resistant to antiepileptic drug treatment (Fisher et al. 1998). The most common pathology underlying TLE is Ammon's horn sclerosis characterized by cell losses in the hilus of the dentate gyrus and in hippocampal sectors CA1 and CA3, while other brain areas are less affected (Babb et al. 1984). In about half of the patients with hippocampal sclerosis, a broadening of the granule cell layer or even a double granule cell layer is observed, termed granule cell dispersion (Houser 1990;Haas et al. 2002). In general, TLE develops after an initial insult, which can be early febrile seizures, tumors, or traumatic brain injury. It may take, however, years from the initial insult until the first clinical symptoms of TLE develop. This time window is termed 'silent phase'. Changes in the molecular biology or morphology of some brain circuitries may develop during this period, ultimately leading to the manifestation of epilepsy. It is associated with pronounced changes in the expression of many neuropeptides and proteins like cyclooxygenase, glutamate decarboxylases, the T-ty...
Epilepsy animal models indicate pronounced changes in the expression and rearrangement of GABAA receptor subunits in the hippocampus and in para-hippocampal areas, including widespread downregulation of the subunits α5 and δ, and up-regulation of α4, subunits that mediate tonic inhibition of GABA. In this case-control study we investigated changes in the expression of subunits α4, α5 and δ in hippocampal specimens of drug resistant temporal lobe epilepsy (TLE) patients who underwent epilepsy surgery. Using in situ-hybridization, immunohistochemistry and α5-specific receptor autoradiography, we characterized expression of the receptor subunits in specimens from patients with and without Ammon’s horn sclerosis compared to post mortem controls. Expression of the α5-subunit was abundant throughout all subfields of the hippocampus including the dentate gyrus, sectors CA1 and CA3, the subiculum and pre- and parasubiculum. Significant but weaker expression was detected for subunits α4 and δ notably in the granule cell/molecular layer of control specimens, but was faint in the other parts of the hippocampus. Expression of all three subunits was similarly altered in sclerotic and non-sclerotic specimens. Respective mRNA levels were increased by about 50 to 80% in the granule cell layer compared with post mortem controls. Subunit α5 mRNA levels and immunoreactivities were also increased in the sector CA3 and in the subiculum. Autoradiography for α5-containing receptors using [3H]L-655,708 as ligand showed significantly increased binding in the molecular layer of the dentate gyrus in non-sclerotic specimens. Increased expression of the α5 and δ subunits is in contrast to the previously observed down-regulation of these subunits in different epilepsy models, whereas increased expression of α4 in temporal lobe epilepsy patients is consistent with that in the rodent models. Our findings indicate increased tonic inhibition likely representing an endogenous anticonvulsive mechanism in temporal lobe epilepsy. GABAA receptors containing α4, α5 and/or δ subunits receptors are located extrasynaptically and mediate volume transmission with tonic inhibition. Sperk et al. show markedly increased expression of these subunits in the hippocampus of temporal lobe epilepsy patients indicating sustained tonic inhibition as a possible endogenous anticonvulsive mechanism.
Neuropeptide Y (NPY)-Y2 receptors are G-protein coupled receptors and, upon activation, induce opening of potassium channels or closing of calcium channels. They are generally presynaptically located. Depending on the neuron in which they are expressed they mediate inhibition of release of NPY and of the neuron's classical transmitter GABA, glutamate or noradrenaline, respectively. Here we provide evidence that Y2 receptor binding is inhibited dose-dependently by GTPγS along Schaffer collaterals, the stria terminalis and the fimbria indicating that Y2 receptors are functionally coupled to G-proteins along these fiber tracts. Double immune fluorescence revealed coexistence of Y2-immunoreactivity with β-tubulin, a marker for axons in the stria terminalis, but not with synaptophysin labeling presynaptic terminals, supporting the localization of Y2 receptors along axonal tracts. After kainic acid-induced seizures in rats, GTPγS-induced inhibition of Y2 receptor binding is facilitated in the Schaffer collaterals but not in the stria terminalis. Our data indicate that Y2 receptors are not only located at nerve terminals but also along fiber tracts and are there functionally coupled to G-proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.