We describe a reference panel of 64,976 human haplotypes at 39,235,157 SNPs constructed using whole genome sequence data from 20 studies of predominantly European ancestry. Using this resource leads to accurate genotype imputation at minor allele frequencies as low as 0.1%, a large increase in the number of SNPs tested in association studies and can help to discover and refine causal loci. We describe remote server resources that allow researchers to carry out imputation and phasing consistently and efficiently.
To elucidate the genetic architecture of amyotrophic lateral sclerosis (ALS) and find associated loci, we assembled a custom imputation reference panel from whole-genome-sequenced patients with ALS and matched controls (n = 1,861). Through imputation and mixed-model association analysis in 12,577 cases and 23,475 controls, combined with 2,579 cases and 2,767 controls in an independent replication cohort, we fine-mapped a new risk locus on chromosome 21 and identified C21orf2 as a gene associated with ALS risk. In addition, we identified MOBP and SCFD1 as new associated risk loci. We established evidence of ALS being a complex genetic trait with a polygenic architecture. Furthermore, we estimated the SNP-based heritability at 8.5%, with a distinct and important role for low-frequency variants (frequency 1–10%). This study motivates the interrogation of larger samples with full genome coverage to identify rare causal variants that underpin ALS risk.
To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.
Characterizing genetic influences on DNA methylation (DNAm) provides an opportunity to understand mechanisms underpinning gene regulation and disease. In the present study, we describe results of DNAm quantitative trait locus (mQTL) analyses on 32,851 participants, identifying genetic variants associated with DNAm at 420,509 DNAm sites in blood. We present a database of >270,000 independent mQTLs, of which 8.5% comprise long-range (trans) associations. Identified mQTL associations explain 15-17% of the additive genetic variance of DNAm. We show that the genetic architecture of DNAm levels is highly polygenic. Using shared genetic control between distal DNAm sites, we constructed networks, identifying 405 discrete genomic communities enriched for genomic annotations and complex traits. Shared genetic variants are associated with both DNAm levels and complex diseases, but only in a minority of cases do these associations reflect causal relationships from DNAm to trait or vice versa, indicating a more complex genotype-phenotype map than previously anticipated.(Extended Data Fig. 5). These results show the value of large sample sizes in blood to detect trans-mQTLs regardless of the tissue. Trans-mQTL SNPs and DNAm exhibit patterned TF binding.Recent studies have uncovered multiple types of transcription factor (TF)-DNA interactions influenced by DNAm, including the binding of DNAm-sensitive TFs [26][27][28] and cooperativity between TFs 27,29 . To gain insights into how SNPs induce long-range DNAm changes, we mapped enrichments for DNAm sites and SNPs across binding sites for 171 TFs in 27 cell types 30,31 . We found strong enrichments for most TFs and cell types among DNAm sites with a trans association (cis + trans: 55%; trans only: 80%; cis only: 18%) and among cis-acting SNPs (cis only: 96%, cis + trans: 91%, trans only: 1%; Fig. 2b, Supplementary Tables 7 and 8, and Supplementary Figs. 22 and 23). Consistent with the observation that trans-only DNAm sites are enriched for CpG islands (Supplementary Fig. 13), DNAm sites that overlap TF-binding sites (TFBSs) were relatively hypomethylated (weighted mean DNAm levels = 21% versus 52%, P < 2.2 × 10 −16 ; Supplementary Fig. 24).Next, we hypothesized that, if a trans-mQTL is driven by TF activity 8,10 , then particular TF-TF pairs may exhibit preferential enrichment 32 . An mQTL has a pair of TFBS annotations 31 , one for the SNP and one for the DNAm site. We evaluated whether the annotation pairs among 18,584 interchromosomal trans-mQTLs were associated with TF binding in a nonrandom pattern (Supplementary Note and Extended Data Fig. 6a,b). We found that 6.1% (22,962 of 378,225) of possible pairwise combinations of SNP-DNAm site annotations were more over-or underrepresented than expected by chance after strict multiple testing correction (Supplementary Note, Supplementary Table 9 and Extended Data Fig. 6c).After accounting for abundance and other characteristics, the strongest pairwise enrichments involved sites close to TFBSs for proteins in the cohesin complex, ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.