• Key message Dynamic global vegetation models are key tools for interpreting and forecasting the responses of terrestrial ecosystems to climatic variation and other drivers. They estimate plant growth as the outcome of the supply of carbon through photosynthesis. However, growth is itself under direct control, and not simply controlled by the amount of available carbon. Therefore predictions by current photosynthesis-driven models of large increases in future vegetation biomass due to increasing concentrations of atmospheric CO 2 may be significant over-estimations. We describe how current understanding of wood formation can be used to reformulate global vegetation models, with potentially major implications for their behaviour.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Carbon dynamics within trees are intrinsically important for physiological functioning, in particular growth and survival, as well as ecological interactions on multiple timescales. Thus, these internal dynamics play a key role in the global carbon cycle by determining the residence time of carbon in forests via allocation to different tissues and pools, such as leaves, wood, storage, and exudates. Despite the importance of tree internal carbon dynamics, our understanding of how carbon is used in trees, once assimilated, has major gaps. The primary tissue that transports carbon from sources to sinks within a tree is the phloem. Therefore, direct phloem transport manipulation techniques have the potential to improve understanding of numerous aspects of internal carbon dynamics. These include relationships between carbon assimilation, nonstructural carbon availability, respiration for growth and tissue maintenance, allocation to, and remobilization from, storage reserves, and long-term sequestration in lignified structural tissues. This review aims to: (1) introduce the topic of direct phloem transport manipulations, (2) describe the three most common methods of direct phloem transport manipulation and review their mechanisms, namely (i) girdling, (ii) compression and (iii) chilling; (3) summarize the known impacts of these manipulations on carbon dynamics and use in forest trees; (4) discuss potential collateral effects and compare the methods; and finally (5) highlight outstanding key questions that relate to tree carbon dynamics and use, and propose ways to address them using direct phloem transport manipulation.
Wood formation has received considerable attention across various research fields as a key process to model. Historical and contemporary models of wood formation from various disciplines have encapsulated hypotheses such as the influence of external (e.g., climatic) or internal (e.g., hormonal) factors on the successive stages of wood cell differentiation. This review covers 17 wood formation models from three different disciplines, the earliest from 1968 and the latest from 2020. The described processes, as well as their external and internal drivers and their level of complexity, are discussed. This work is the first systematic cataloging, characterization, and process-focused review of wood formation models. Remaining open questions concerning wood formation processes are identified, and relate to: (1) the extent of hormonal influence on the final tree ring structure; (2) the mechanism underlying the transition from earlywood to latewood in extratropical regions; and (3) the extent to which carbon plays a role as “active” driver or “passive” substrate for growth. We conclude by arguing that wood formation models remain to be fully exploited, with the potential to contribute to studies concerning individual tree carbon sequestration-storage dynamics and regional to global carbon sequestration dynamics in terrestrial vegetation models.
Wood formation determines major long-term carbon (C) accumulation in trees and therefore provides a crucial ecosystem service in mitigating climate change. Nevertheless, we lack understanding of how species with contrasting wood anatomical types differ with respect to phenology and environmental controls on wood formation.In this study, we investigated the seasonality and rates of radial growth and their relationships with climatic factors, and the seasonal variations of stem nonstructural carbohydrates (NSC) in three species with contrasting wood anatomical types (red oak: ring-porous; red maple: diffuse-porous; white pine: coniferous) in a temperate mixed forest during 2017-2019.We found that the high ring width variability observed in both red oak and red maple was caused more by changes in growth duration than growth rate. Seasonal radial growth patterns did not vary following transient environmental factors for all three species. Both angiosperm species showed higher concentrations and lower inter-annual fluctuations of NSC than the coniferous species.Inter-annual variability of ring width varied by species with contrasting wood anatomical types. Due to the high dependence of annual ring width on growth duration, our study highlights the critical importance of xylem formation phenology for understanding and modelling the dynamics of wood formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.