Hydrogenases are essential for H(2) cycling in microbial metabolism and serve as valuable blueprints for H(2)-based biotechnological applications. However, most hydrogenases are extremely oxygen sensitive and prone to inactivation by even traces of O(2). The O(2)-tolerant membrane-bound [NiFe]-hydrogenase of Ralstonia eutropha H16 is one of the few examples that can perform H(2) uptake in the presence of ambient O(2). Here we show that O(2) tolerance is crucially related to a modification of the internal electron-transfer chain. The iron-sulfur cluster proximal to the active site is surrounded by six instead of four conserved coordinating cysteines. Removal of the two additional cysteines alters the electronic structure of the proximal iron-sulfur cluster and renders the catalytic activity sensitive to O(2) as shown by physiological, biochemical, spectroscopic and electrochemical studies. The data indicate that the mechanism of O(2) tolerance relies on the reductive removal of oxygenic species guided by the unique architecture of the electron relay rather than a restricted access of O(2) to the active site.
This tutorial review describes studies of hydrogen production and oxidation by biological catalysts--metalloenzymes known as hydrogenases--attached to electrodes. It explains how the electrocatalytic properties of hydrogenases are studied using specialised electrochemical techniques and how the data are interpreted to allow assessments of catalytic rates and performance under different conditions, including the presence of O2, CO and H2S. It concludes by drawing some comparisons between the enzyme active sites and platinum catalysts and describing some novel proof-of-concept applications that demonstrate the high activities and selectivities of these 'alternative' catalysts for promoting H2 as a fuel.
Studies have been carried out to establish the ability of O2-tolerant membrane-bound [NiFe] hydrogenases (MBH) from Ralstonia sp. to catalyze H2 production in addition to H2 oxidation. These hydrogenases are not noted for H2-evolution activity, and this is partly due to strong product inhibition. However, when adsorbed on a rotating disk graphite electrode the enzymes produce H2 efficiently, provided the H2 product is continuously removed by rapidly rotating the electrode and flowing N2 through the gastight electrochemical cell. Electrocatalytic H2 production proceeds with minimal overpotentiala significant observation because lowering the overpotential (the electrochemically responsive activation barrier) is seen as crucial in developing small-molecule catalysts for H2 production. A mutant having a high KM for H2 oxidation did not prove to be a better H2 producer relative to the wild type, thus suggesting that weak binding of H2 does not itself confer a tendency to be a H2 producer. Inhibition by H2 is much stronger than inhibition by CO and, most significantly, even O2. Consequently, H2 can be produced sustainably in the presence of O2 as long as the H2 is removed continuously, thereby proving the feasibility for biological H2 production in air.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.