LincRNAs are long non-coding transcripts (>200 nt) from the intergenic regions of annotated protein-coding genes. One of the most highly induced lincRNAs in macrophages upon TLR ligation is lincRNA-Cox2, which has recently been shown to mediate both the activation and repression of distinct classes of immune genes in innate immune cells. We report here that lincRNA-Cox2 located at chromosome 1 proximal to the prostaglandin-endoperoxide synthase 2 (Ptgs2/Cox2) gene is an early-primary inflammatory gene controlled by NF-κB signaling in murine macrophages. Functionally, lincRNA-Cox2 is required for the transcription of NF-κB-regulated late-primary inflammatory response genes stimulated by bacterial lipopolysaccharide. Specifically, lincRNA-Cox2 is assembled into the SWI/SNF (SWItch/Sucrose NonFermentable) complex in cells after lipopolysaccharide stimulation. This resulting lincRNA-Cox2/SWI/SNF complex can modulate the assembly of NF-κB subunits to the SWI/SNF complex, and ultimately, SWI/SNF-associated chromatin remodeling and transactivation of the late-primary inflammatory response genes in macrophages in response to microbial challenge. Therefore, our data indicate a new regulatory role of NF-κB-induced lincRNA-Cox2 to act as a co-activator of NF-κB for the transcription of late-primary response genes in innate immune cells through modulation of epigenetic chromatin remodeling.
The nucleotide sequence of the entire Escherichia coli edd-eda region that encodes the enzymes of the Entner-Doudoroff pathway was determined. The edd structural gene begins 236 bases downstream ofzwf. The eda structural gene begins 34 bases downstream of edd. The edd reading frame is 1,809 bases long and encodes the 602-amino-acid, 64,446-Da protein 6-phosphogluconate dehydratase. The deduced primary amino acid sequences of the E. coli and Zymomonas mobilis dehydratase enzymes are highly conserved. The eda reading frame is 642 bases long and encodes the 213-amino-acid, 22,283-Da protein 2-keto-3-deoxy-6-phosphogluconate aldolase. This enzyme had been previously purified and sequenced by others on the basis of its related enzyme activity, 2-keto-4-hydroxyglutarate aldolase. The data presented here provide proof that the two enzymes are identical. The primary amino acid sequences of the E. coli, Z. mobiis, and Pseudomonas putida aldolase enzymes are highly conserved. When E. coli is grown on gluconate, the edd and eda genes are cotranscribed.Four putative promoters within the edd-eda region were identified by transcript mapping and computer analysis. P1, located upstream of edd, appears to be the primary gluconate-responsive promoter of the edd-eda operon, responsible for induction of the Entner-Doudoroff pathway, as mediated by the gntR product. High basal expression of eda is explained by constitutive transcription from P2, P3, and/or P4 but not P1.
The objective of this investigation was to develop a thermosensitive vaginal gel containing raltegravir + efavirenz loaded PLGA nanoparticles (RAL-EFV-NPs) for pre-exposure prophylaxis of HIV. RAL-EFV-NPs were fabricated using a modified emulsion-solvent evaporation method and characterized for size and zeta potential. The average size and surface charge of RALEFV-NP were 81.8 ± 6.4 nm and −23.18 ± 7.18 mV respectively. The average encapsulation efficiency of raltegravir and efavirenz was 55.5% and 98.2% respectively. Thermosensitive vaginal gel containing RAL-EFV-NPs was successfully prepared using a combination of Pluronic F127 (20% w/v) and Pluronic F68 (1% w/v). Incorporation RAL-EFV-NPs in the gel did not result in nanoparticle aggregation and RAL-EFV-NPs containing gel showed thermogelation at 32.5°C. The RAL-EFV-NPs were evaluated for inhibition of HIV-1NL4-3 using TZM-bl indicator cells. The EC90 of RAL-EFV-NPs was lower than raltegravir + efavirenz (RAL-EFV) solution but did not reach significance. Compared to control HeLa cells without any treatment, RAL-EFV-NPs or blank gel were not cytotoxic for 14 days in vitro. The intracellular levels of efavirenz in RALEFV-NPs treated HeLa cells were above the EC90 for 14 days whereas raltegravir intracellular concentrations were eliminated within 6 days. Transwell experiments of NPs-in-gel demonstrated rapid transfer of fluorescent nanoparticles from the gel and uptake in HeLa cells within 30 min. These data demonstrate the potential of antiretroviral NP-embedded vagina gels for long-term vaginal pre-exposure prophylaxis of heterosexual HIV-1 transmission.
Background: Combination antiretroviral (AR) therapy continues to be the mainstay for HIV treatment. However, antiretroviral drug nonadherence can lead to the development of resistance and treatment failure. We have designed nanoparticles (NP) that contain three AR drugs and characterized the size, shape, and surface charge. Additionally, we investigated the in vitro release of the AR drugs from the NP using peripheral blood mononuclear cells (PBMCs).
Vaginal HIV transmission accounts for the majority of new infections worldwide. Currently, multiple efforts to prevent HIV transmission are based on pre-exposure prophylaxis with various antiretroviral drugs. Here, we describe two novel nanoformulations of the reverse transcriptase inhibitor rilpivirine for pericoital and coitus-independent HIV prevention. Topically applied rilpivirine, encapsulated in PLGA nanoparticles, was delivered in a thermosensitive gel, which becomes solid at body temperature. PLGA nanoparticles with encapsulated rilpivirine coated the reproductive tract and offered significant protection to BLT humanized mice from a vaginal high-dose HIV-1 challenge. A different nanosuspension of crystalline rilpivirine (RPV LA), administered intramuscularly, protected BLT mice from a single vaginal high-dose HIV-1 challenge one week after drug administration. Using transmitted/founder viruses, which were previously shown to establish de novo infection in humans, we demonstrated that RPV LA offers significant protection from two consecutive high-dose HIV-1 challenges one and four weeks after drug administration. In this experiment, we also showed that, in certain cases, even in the presence of drug, HIV infection could occur without overt or detectable systemic replication until levels of drug were reduced. We also showed that infection in the presence of drug can result in acquisition of multiple viruses after subsequent exposures. These observations have important implications for the implementation of long-acting antiretroviral formulations for HIV prevention. They provide first evidence that occult infections can occur, despite the presence of sustained levels of antiretroviral drugs. Together, our results demonstrate that topically- or systemically administered rilpivirine offers significant coitus-dependent or coitus-independent protection from HIV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.