Background Psychobiological processes linking stress and vascular diseases remain poorly understood. The retina and the brain share a common embryonic-diencephalon origin and blood-barrier physiology e.g. ongoing ischemia facilitates S100B release with astrocytic activity and glial-fibrillary-acidic-protein expression (GFAP). However, GFAP decreases revealed astrocyte pathology in the prefrontal cortex of depression/suicide cases; and might be a key mechanism in stress – disease pathways. Methods A chronic emotional stress phenotype independent of age, ethnicity or sex was used to stratify the current prospective cohort (N = 359; aged 46 ± 9 years) into Stress (N = 236) and no-Stress groups (N = 123). Prospective data for glia ischemia risk markers were obtained, including 24 h BP, fasting S100B, GFAP, HbA 1C and tumor-necrosis-factor-α (TNF-α). At 3-yr follow-up: diastolic-ocular-perfusion-pressure (indicating hypo-perfusion risk) was measured and retinal vessel calibers were quantified from digital images in the mydriatic eye. Results Higher hypertension (75% vs. 16%), diabetes (13% vs. 0%) and retinopathy (57% vs. 45%) prevalence was observed in Stress compared to no-Stress individuals. Stressed individuals had consistently raised S100B, TNF-α, HbA 1C and higher diastolic-ocular-perfusion-pressure, but decreases in GFAP and GFAP:S100B. Furthermore stroke risk markers, arterial narrowing and venous widening were associated with consistently raised S100B, GFAP:S100B (p = 0.060), TNF-α and higher diastolic-ocular-perfusion-pressure [Adj. R 2 0.39–0.41, p ≤ 0.05]. No retinal-glia associations were evident in the no-Stress group. Conclusions Retinal-glia ischemia and inflammation was induced by chronic stress. Persistent higher inflammation and S100B with GFAP decreases further reflected stress-induced astrocyte pathology in the human retina. It is recommended to increase awareness on chronic stress and susceptibility for brain ischemia.
IntroductionUncertainties exist on whether the main determinant of abnormal glucose tolerance (Abnl-GT) in Africans is β-cell failure or insulin resistance (IR). Therefore, we determined the prevalence, phenotype and characteristics of Abnl-GT due to β-cell failure versus IR in 486 African-born blacks (male: 64%, age: 38±10 years (mean±SD)) living in America.Research design and methodsOral glucose tolerance test were performed. Abnl-GT is a term which includes both diabetes and prediabetes and was defined as fasting plasma glucose (FPG) ≥5.6 mmol/L and/or 2-hour glucose ≥7.8 mmol/L. IR was defined by the lowest quartile of the Matsuda Index (≤2.98) and retested using the upper quartile of homeostatic model assessment of insulin resistance (HOMA-IR) (≥2.07). Abnl-GT-IR required both Abnl-GT and IR. Abnl-GT-β-cell failure was defined as Abnl-GT without IR. Beta-cell compensation was assessed by the Disposition Index (DI). Fasting lipids were measured. Visceral adipose tissue (VAT) volume was obtained with abdominal CT scan.ResultsThe prevalence of Abnl-GT was 37% (182/486). For participants with Abnl-GT, IR occurred in 38% (69/182) and β-cell failure in 62% (113/182). Compared with Africans with Abnl-GT-IR, Africans with Abnl-GT-β-cell failure had lower body mass index (BMI) (30.8±4.3 vs 27.4±4.0 kg/m2), a lower prevalence of obesity (52% vs 19%), less VAT (163±72 vs 107±63 cm2), lower triglyceride (1.21±0.60 vs 0.85±0.42 mmol/L) and lower FPG (5.9±1.4 vs 5.3±0.6 mmol/L) and 2-hour glucose concentrations (10.0±3.1 vs 9.0±1.9 mmol/L) (all p<0.001) and higher DI, high-density lipoprotein (HDL), low-density lipoprotein particle size and HDL particle size (all p<0.01). Analyses with Matsuda Index and HOMA-IR yielded similar results. Potential confounders such as income, education, alcohol and fiber intake did not differ by group.ConclusionsBeta-cell failure occurred in two-thirds of participants with Abnl-GT and may be a more frequent determinant of Abnl-GT in Africans than IR. As BMI category, degree of glycemia and lipid profile appeared more favorable when Abnl-GT was due to β-cell failure rather than IR, the clinical course and optimal interventions may differ.Trial registration numberNCT00001853.
The overall consensus is that foreign-born adults who come to America age < 20 y achieve economic success but develop adverse behaviors (smoking and drinking) that lead to worse cardiometabolic health than immigrants who arrive age ≥ 20 y. Whether age of immigration affects the health of African-born Blacks living in America is unknown. Our goals were to examine cultural identity, behavior, and socioeconomic factors and determine if differences exist in the cardiometabolic health of Africans who immigrated to America before and after age 20 y. Of the 482 enrollees (age: 38 ± 1 (mean ± SE), range: 20–65 y) in the Africans in America cohort, 23% (111/482) arrived age < 20 y, and 77% (371/482) arrived age ≥ 20 y. Independent of francophone status or African region of origin, Africans who immigrated age < 20 y had similar or better cardiometabolic health than Africans who immigrated age ≥ 20 y. The majority of Africans who immigrated age < 20 y identified as African, had African-born spouses, exercised, did not adopt adverse health behaviors, and actualized early life migration advantages, such as an American university education. Due to maintenance of cultural identity and actualization of opportunities in America, cardiometabolic health may be protected in Africans who immigrate before age 20. In short, immigrant health research must be cognizant of the diversity within the foreign-born community and age of immigration.
In this observational study, by the use of a multiplex proteomic platform, we aimed to explore associations between 92 targeted proteins involved in cardiovascular disease and/or inflammation, and phenotypes of deteriorating vascular health, with regards to ethnicity. Proteomic profiling (92 proteins) was carried out in 362 participants from the Sympathetic activity and Ambulatory Blood Pressure in Africans (SABPA) study of black and white African school teachers (mean age 44.7 ± 9.9 years, 51.9% women, 44.5% Black Africans, 9.9% with known cardiovascular disease). Three proteins with <15% of samples below detectable limits were excluded from analyses. Associations between multiple proteins and prevalence of hypertension as well as vascular health [Carotid intima-media thickness (cIMT) and pulse wave velocity (PWV)] measures were explored using Bonferroni-corrected regression models. Bonferroni-corrected significant associations between 89 proteins and vascular health markers were further adjusted for clinically relevant co-variates. Hypertension was associated with growth differentiation factor 15 (GDF-15) and C-X-C motif chemokine 16 (CXCL16). cIMT was associated with carboxypeptidase A1 (CPA1), C-C motif chemokine 15 (CCL15), chitinase-3-like protein 1 (CHI3L1), scavenger receptor cysteine-rich type 1 protein M130 (CD163) and osteoprotegerin, whereas PWV was associated with GDF15, E-selectin, CPA1, fatty acid-binding protein 4 (FABP4), CXCL16, carboxypeptidase B (CPB1), and tissue-type plasminogen activator. Upon entering ethnicity into the models, the associations between PWV and CPA1, CPB1, GDF-15, FABP4, CXCL16, and between cIMT and CCL-15, remained significant. Using a multiplex proteomic approach, we linked phenotypes of vascular health with several proteins. Novel associations were found between hypertension, PWV or cIMT and proteins linked to inflammatory response, chemotaxis, coagulation or proteolysis. Further, we could reveal whether the associations were ethnicity-dependent or not.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.